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Computational Microphysiology

We want to simulate realistic 3D cellular microphysiology at length scales from nm and
up and timescales of ns and longer.
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Biomolecular Systems at the Molecular Level

To a first approximation, at the molecular
level cells mostly consist of biomolecules
solvated by (a large number of) water
molecules.

Relevant time and length scales are fs
(10−15s) and Å (10−10m).

At room temperature (25◦C) water
molecules move rapidly. From equilibrium
statistical mechanics

v̄ =
√

3kT
m

= 640 m/s

Frequent collisions of solute with water
molecules randomizes their movement.
Molecular motions are highly correlated.
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Biomolecular Systems at the Microphysiological Level

At the microphysiological level we are concerned
with biology at time and length scales on the
order of µs (10−6s) or longer and µm (10−6m)
and up.

At these scales molecular motion becomes
uncorrelated and we can, to a first
approximation, ignore water molecules and their
rapid motion and instead describe molecular
movement by stochastic Brownian Motion
combined with a diffusion coefficient.

Algorithms for simulations at the cellular level
are typically based on PDE/finite element or
stochastic methods.
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Diffusion Theory - Fick’s 1st and 2nd Law

Developed by physiologist Adolf Fick in 1855.

Fick’s 1st Law:

J(r, t) = −D(C , t) ∇C(r, t) (1)

Fick’s 2nd Law:

∂C(r, t)

∂t
= ∇ (D(C , t) ∇C(r, t)) = D(C , t) ∇2C(r, t) (2)

Eq. 2 is called the Diffusion Equation.

Here, J, diffusion flux [Mol length−2 time−1], D, diffusion coefficient [length2 time−1,
cm2s−1], C concentration [Mol length−3, mol l−1].
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Diffusion Theory - Solution to 2nd Law

The solution to Fick’s 2nd Law provides the basis for MCell diffusion algorithm.

∂C(r, t)

∂t
= D(C , t) ∇2C(r, t) (3)

In the neighborhood of a given molecule location, the concentration C can be assumed
to be radially symmetric, C(r, t) ≡ C(r , t) and Eq. 3 simplifies to

∂C(r , t)

∂t
= D(C , t)

∂2C(r , t)

∂2r
(4)

Equation can be solved analytically for certain boundary conditions. E.g. for a point
source of M molecules the solution becomes

C(r , t) =
M

λ3π3/2
e−r2/λ2

, λ =
√

4Dt (5)
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Monte Carlo Probabilities For Diffusion in MCell

Eq. 5 can be directly converted into the fractional probability pr for a displacement
between r and (r + dr) for a single diffusing molecule:

pr =
1

λ3π3/2
e−r2/λ2

(4πr 2)dr (6)

ps =
4√
π

s2e−s2

ds , s =
r

λ
=

r√
4Dt

(7)

Using Eq. 6 we can also compute the mean radial displacement l̄r

l̄r =
2

π
λ ∼
√

t (̄l⊥ =
l̄r
2

) (8)
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Monte Carlo Probabilities For Diffusion in MCell

ps =
4√
π

s2e−s2

ds

s =
r√
4Dt

To choose a radial distance R for diffusion we pick a random number X in [0, 1] and solve

X = CDF (R) =

∫ R

0

psds = erf (R)− 2√
π

R e−R2

(9)

This can be efficiently computed during runtime of the simulation.
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Monte Carlo Probabilities For Unimolecular Transitions in MCell

S0S1
k1

k2
S2

...

kn
Sn

Unimolecular transition: Initial state S0

can undergo one of n possible transitions to
states S1 through Sn with first order rate
constants k1, k2, .... kn.

We need to know the probability pt that a single molecule in S0 undergoes a transition.
pt is given by the fraction of [S0] that undergoes a transition during time t:

pt =
[S1]t + [S2]t + ...+ [Sn]t

[S0]0
= 1− [S0]t

[S0]0
(10)

From the rate equation we obtain

−d [S0] = (k1 + k2 + ...+ kn)[S0]dt =

(
n∑

j=1

kj

)
[S0]dt (11)
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Monte Carlo Probabilities For Unimolecular Transitions in MCell

Eq. 11 can be integrated

∫ [S0]t

[S0]0

d [S0]

[S0]
= −

(
n∑

j=1

kj

)∫ t

0

dt (12)

to yield

[S0]t
[S0]0

= e−
∑n

j=1 kj t (13)
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Monte Carlo Probabilities For Unimolecular Transitions in MCell

Substituting Eq. 13 into Eq. 10 then gives the probability pt for unimolecular transitions
as (here τ is the mean lifetime of S0)

pt = 1− e−
∑

j kj t , τ = 1/
∑

kj (14)

p1 = pt
k1∑
j kj

, ... pn = pt
kn∑
j kj

;
∑
i

pi = pt (15)

Notes:

The näıve way to choose unimolecular reactions is to compare a single random
number in [0, 1] to the cummulative probabilities (pk1, pk1 + pk2, ..., 1).

MCell3 instead computes the lifetime of each molecule from the exponential
distribution of lifetimes ρ(t) = 1

k
e−kt and then uses its scheduler to schedule the

unimolecular reaction to occur at the appropriate time.
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Monte Carlo Probabilities For Bimolecular Associations in MCell

A + R

k+1
AR1

...

k+n ARn

Bimolecular Association: An example
would be association between ligand A
(volume molecule) and receptor R (surface
molecule) with n possible binding sites.

We will derive a relation for pb, the binding probability of ligand A to receptor R. The
average rate of binding pbt after NH hits is given by

pbt = 1− (1− pb)NH (16)

Next, we require that the average binding rate is equal to binding rate predicted by mass
action kinetics given by

pt =
∑
i

k+i [A]0∆t , ∆t → 0 (17)

1− (1− pb)Nh = pbt = pt =
∑
i

k+i [A]0∆t (18)
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Monte Carlo Probabilities For Bimolecular Associations in MCell

For small ∆t, pb and NH approach zero and thus (1− pb)NH ≈ (1− NHpb). Thus, Eq.
18 simplifies to

pb =
∑
i

k+i
[A]0∆t

NH
, ∆t → 0 (19)

Next, we need to derive a relation for NH the number of hits of A on R
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Monte Carlo Probabilities For Bimolecular Associations in MCell

The number of hits per unit time on a tile with
surface area AET is given by

hits = 0.5Na
l̄⊥
∆t

AET [A]0 (20)

This results in (∆t → 0)

NH =

∫ ∆t

0

hits dt ≈ NaAET [A]0

(
4D

π

)1/2

∆t

(21)

Eliminating NH in Eq. 19 with 21 then yields the final expression for pb

pb =
∑
i

k+i
1

2NaAET

(
π∆t

D

)1/2

(22)

This can be efficiently computed at system initialization.
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Monte Carlo Probabilities For Volume Reactions in MCell

A B

B

B Ai f

Crint

A B --> products+

Volume molecules in MCell diffuse via
ray-tracing along a randomly selected direction
and diffusion step length computed as explained
previously.

Reaction partners are discovered and tested for
reactions during ray marching. This unique
approach provides good correlation between
diffusive motion and location of reactants.

For the purpose of collision detection reactants
acquire an interaction radius.

Using an argument analogous to the one for bimolecular associations we can derive the
following relation for the reaction probility between two diffusing volume molecules with
diffusion constants D1 and D2:

p =
k

4Aint

(
π∆t

D1 + D2

)1/2

(23)
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