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Bakan A,* Dutta A,*  Mao W,  Liu Y,  Chennubhotla C,  
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dynamics inferred from theory and experiments
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http://bioinformatics.oxfordjournals.org/content/30/18/2681.long
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ProDy: Usage and dissemination statistics

Date Releases Downloads1 Visits2 Unique3 Pageviews
2

Countries5

Nov’10 - Oct’11 19 8,530 8,678 2,946 32,412 45

Nov’11 - Oct’12 6+9* 35,108 16,472 6,414 71,414 59

Nov’12 - Oct’13 8* 87,909 19,888 8,145 86,204 66

Nov’13 - Oct’14 5* 140,101 24,134 11,170 112,393 69

Nov’14 - May’15 1* 68,230 15,941 8,479 66,641 50

June ’15- June‘16 5* 124,613 32,491 15,402 140,818 132

June’16- June 17 31,374 16,201 129,900 136

Total (6/17) 53+ 464,491+ 148,978 68,757 639,782 136

1 Download statistics retrieved from PyPI (https://pypi.python.org/pypi/vanity).
2 Google Analytics (www.google.com/analytics) was used to track:
3 Unique indicates number of unique visitors; 

Total (5/18) 979,356 182,415 86,063 784,430

Total (5/19) 1,670,461 218,811 106,130 784,430

https://pypi.python.org/pypi/vanity
http://www.google.com/analytics


Usage pattern
Google Analytics

June 1, 2016 – June 1, 2017



Who? Where?

May 2019



Tutorials

Day 1-2
http://prody.csb.pitt.edu/tutorials/

ProDy NMWiz

Evol

Druggability

Day 3



Workshop files on ProDy website
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Representation of structure as a network

Why network models?

for large systems’ collective 

motions & long time processes beyond 

the capability of full atomic simulations

to incorporate structural data in 

the models – at multiple levels of 

resolution

to take advantage of theories 

developed in other disciplines:  

polymer physics, graph theory, spectral 

graph methods, etc.http://www.lactamme.polytechnique.fr/



Proteins are not static: 

They move, breath, work, dance, interact with each other 

Local motions



Proteins are not static: 

They move, breath, work, dance, interact with each other 

Global motions



Many proteins are molecular machines

STMV dynamics (Zheng Yang)

And mechanical properties become more important in complexes/assemblies



Each structure encodes a unique dynamics
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Structure              Dynamics              Function  

Signaling dynamics of AMPARs and NMDARs

domain/subunit motions

Concerted movements of signaling molecules

Dutta A, Krieger J, Lee JY, Garcia-Nafria J, Greger IH, Bahar I (2015) Cooperative Dynamics of Intact AMPA and NMDA 

Glutamate Receptors: Similarities and Subfamily-Specific DifferencesStructure 23: 1692-170

http://www.sciencedirect.com/science/article/pii/S0969212615002828


GOAL: TO GENERATE DATA FOR MESOSCOPIC SCALE
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Molecular modeling & Sim

(ENM, PGM, WE)

Subcellular: Spatial/network

(MCELL & BioNetGen)

In
fo

rm
at

io
n 

tr
an

sf
er

Analytical methods & Critical assessment
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Cell/Tissue: Images/circuits

(Cell Organizer, SLML & VVFS)

Developing integrated methodology to 

enable information transfer across scales

1
3

n
m

from molecules

Microphysiological simulations

to subcellar events

from 6 x 6 x 5 μm3 sample of adult rat 

hippocampal stratum radiatum neuropil
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Molecular modeling & Sim

(ENM, PGM, WE)

Subcellular: Spatial/network

(MCELL & BioNetGen)
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Analytical methods & Critical assessment

Subcellular: Spatial/network

(MCELL & BioNetGen)

Accelerated MD, 

Brownian simulations

Coarse-grained approaches

Elastic Network Models
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Developing integrated methodology for complex systems dynamics, to enable 

information transfer across scales

Molecular simulations



Each structure encodes a unique dynamics
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NMR

fs ps ns                 ms               ms s                

bond 

vibrations

sidechain

motions

time scales
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s 
(m

)

atomic simulations

10-7

10-8

10-9

10-10

10-11

X-ray

domain/subunit motions

loop motions

Cooperative machinery

QC/MM Coarse-grained computations

Structure              Dynamics              Function  



Summary
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1. Theory
a. Gaussian Network Model (GNM)
b. Anisotropic Network Model (ANM)
c. Resources/Servers/Databases (ProDy, DynOmics)

2. Bridging Sequence, Structure and Function

a. Ensemble analysis using the ANM
b. Combining sequence and structure analyses – signature dynamics
c. Allosteric communication – sensors and effectors

3. Membrane proteins and druggability
a. Modeling environmental effects using elastic network models
b. Modeling & simulations of Membrane Proteins with ENMs for lipids
c. Druggability simulations



Two elastic network models:
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Gaussian Network Model (GNM)
o Li H, Chang YY, Yang LW, Bahar I (2016) iGNM 2.0: the Gaussian network 

model database for bimolecular structural dynamics Nucleic Acids Res 44: D415-
422

o Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in 
protein Folding & Design 2: 173-181.

Anisotropic Network Model (ANM)

o Eyal E, Lum G, Bahar I (2015)The Anisotropic Network Model web server at 
2015 (ANM 2.0) Bioinformatics 31: 1487-9

o Atilgan AR, Durrell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I 
(2001)Anisotropy of fluctuation dynamics of proteins with an elastic network 
model Biophys J 80: 505-515.

http://www.ncbi.nlm.nih.gov/pubmed/26582920?dopt=Abstract
http://www.ccbb.pitt.edu/Faculty/bahar/publications/99.pdf
http://bioinformatics.oxfordjournals.org/content/early/2015/01/19/bioinformatics.btu847.long
http://www.ccbb.pitt.edu/Faculty/bahar/publications/143.pdf


Physics-based approach

Statistical Mechanics of Polymers

Theory of Rubber Elasticity

Paul J. Flory (1910-1985)

Nobel Prize in Chemistry 1974
Elastic Network Model for Proteins

And Pearson (1976),  Eichinger (1980), Klockzkowski, Erman & Mark (1989)…



Collective motions

i

j
Rij

Eigenvalue decomposition of 

Kirchhoff/Hessian matrix 

mode 1 mode 2 

A B 

1 4 

3 2 

1 4 

3 2 

Bahar, Lezon, Yang & Eyal (2010) Global Dynamics of Proteins: Bridging Between Structure  and Function Annu Rev Biophys 39: 23-42

GNM: Bahar et al Fold & Des 1996; Haliloglu et al. Phys Rev Lett1997 

ANM: Doruker et al. Proteins 2000;  Atilgan et al, Biophys J 2001

Based on theory of elasticity for 

polymer networks by Flory, 1976

file:///C:/Users/bahar/Desktop/Seminars/1ake_network.mov
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Each node represents a residue

Residue positions, Ri, identified by 
a-carbons’ coordinates

Springs connect residues located 
within a cutoff distance (e.g., 10 Å) 

→ Nodes are subject to Gaussian 
fluctuations DRi

→ Inter-residue distances Rij also 
undergo Gaussian fluctuations

→ DRij = DRj - DRi

Bahar, Atilgan & Erman, Fold & Des 1997

Gaussian Network Model (GNM)

Fluctuations in residue positions

Rk k
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Fluctuation vector:

→DR =

Bahar, Atilgan & Erman, Fold & Des 1997

Fluctuations in residue positions

DR1

DR2

DR3

DR4

..

..

..

..

DRN

Rk k

Gaussian Network Model (GNM)



Rij
0

Rij
(k)

Ri
0

Rj
0

DRi
(k)

DRj
(k)

dij/2

- dij/2

X

Y

Z

DRij = DRj - DRi



5/13/2019

Instantaneous deviation for atom i

DRi(tk) = Ri(tk) - Ri(0)

Fluctuation
with respect to  starting structure R(0)

Under equilibrium conditions:

Average displacement from equilibrium: < DRi(tk)> = 0

But the mean-square fluctuation (MSF), < (DRi(tk))
2> ≠ 0



Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)
2  + (DR23)

2  + ........ (DRN-1,N)2 ]

DR12 = R12- R12
0

Classical bead-and-spring model

   =  

  1

-1
-1
 2
-1

-1
 2

 

-1

.. ...
-1
 

 
2
-1

 
-1
 1  

= (g/2) [ (DR2 – DR1)
2  + (DR3 – DR2)

2   + ........  

Force constant



Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)
2  + (DR23)

2  + ........ (DRN-1,N)2 ]

   =  
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= (g/2) [ (DR2 – DR1)
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Force constant



Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)
2  + (DR23)

2  + ........ (DRN-1,N)2 ]

   =  

  1

-1
-1
 2
-1

-1
 2

 

-1

.. ...
-1
 

 
2
-1

 
-1
 1  

= (g/2) [ (DR2 – DR1)
2  + (DR3 – DR2)

2   + ........  

[DR1    DR2   DR3  ….   DRN](g/2)
=

Fluctuation vector

DR1

DR2

DR3

DRNVtot= (g/2) DRT  DR
Force constant
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Kirchhoff matrix for inter-residue contacts

 =

 provides a complete description of contact topology!

1 N

N

1

For a protein of N residues

-1 if rik < rcut

0 if rik > rcut
ik=

ii = - Sk ik

VGNM = (g/2) DRT  DR
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Statistical mechanical averages

 provides a complete description of contact topology!

For a protein of N residues

  DDD=DD
−

 
TkV

j  iNj  i deZ B RRRRR  . .  )()/1(
/

 ijB Tk 1)/3( −= g



[-1]ii ~ <(DRi)
2>

Kirchhoff matrix fully determines the residue profile of
mean-square fluctuations

And the cross-correlations between residue motions

[-1]ij ~ <(DRi .DRj)>

weizmann-lecture.ppt
weizmann-lecture.ppt


Comparison with B factors
 X-ray crystallographic structures deposited in the 

PDB also report the B-factors (Debye-Waller factors) 
for each atom, in addition to atomic coordinates

 B-factors scale with mean-square fluctuations 
(MSFs), i.e. for atom i, 

Bi = [8p2/3] <(DRi)
2> 

35

How do residue MSFs compare with the B-factors? 



Output from DynOmics
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Example: 1vaa
PDB title: CRYSTAL STRUCTURES OF 
TWO VIRAL PEPTIDES IN COMPLEX 
WITH MURINE MHC CLASS I H-2KB

1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol
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Output from DynOmics

1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


 
 

B-factors are affected by crystal contacts

Two X-ray structures for a designed sugar-binding protein LKAMG



  
 

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

Particular loop motions are curtailed by intermolecular contacts in the crystal 

environment causing a discrepancy between theory and experiments 

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

FOR MORE INFO...

B-factors are affected by crystal contacts



 

Agreement between theory and experiments upon 

inclusion of crystal lattice effects into the GNM

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

FOR MORE INFO...

Particular loop motions are curtailed by intermolecular contacts in the crystal 

environment causing a discrepancy between theory and experiments 

Crystal contacts

theory



Application to hemoglobin

0

10

20

30

40

50

0 50 100 150 200 250 300

a -subunit

theoretical B-factor

experimental B-factor

residue number

 -subunit

B- factors – Comparison with experiments 

C. Xu, D. Tobi and I. Bahar (2003) J. Mol.  Biol. 2003, 153-168 

 

 

 

Intradimer cooperativity – Symmetry rule (Yuan 

et al. JMB 2002;  Ackers et  al. PNAS 2002.)



Cross-correlations
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- Provide information on the relative movements of pairs of 

residues

- Purely orientational correlations (correlation cosines) are 

obtained by normalizing cross-correlations as

<(DRi .DRj)>  

[<(DRi)
2> <(DRj)

2>]1/2
-1 ≤ ≤ 1

Fully 

anticorrelated

Fully 

correlated



Output from iGNM
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1cot

Li, Chang, Yang and Bahar (2016)

Nucleic Acids Res 44: D415-422



Output from DynOmics - ENM
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1vaa

Li, Chang, Lee, Bahar & Yang (2017) Nucleic Acids Res 45:W374 - W380

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Cross-Correlations
are elements of the

Covariance Matrix C
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-1 ~ C
Covariance scales with the 

inverse of the Kirchhoff 

matrix. 

The proportionality 

constant is 3kT/g



Covariance matrix (NxN)

DR1 . DR1> DR1 . DR2> ... ... DR1 . DRN>

DR2. DR1> DR2. DR2>

...

...

DRN . DR1> DRN. DRN>

C =

DR = N-dim vector of instantaneous fluctuations DRi for all residues (1 ≤ i ≤ N) 

< DRi . DRi> = ms fluctuation of site i averaged over time (or all m snapshots).

= DR DRT



Normal Modes

Collective Motions 
Encoded by the Structure



Eigenvalue decomposition of 
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 = U L UT

l0

l1

l2

l3

lN−1

where L is the diagonal matrix of eigenvalues

L = 

l0 = 0
(zero eigenvalue)

l1  l2  ....  lN−1



Eigenvalue decomposition of 
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 = U L UT

u11

u12

u13

u1N

and U is the matrix of eigenvectors

U = 

u21

u22

u23

u2N

uN1

uN2

uN3

uNN

u0 u1 uN-1 UT = 

u0
T

u1
T

uN-1
T
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Note:

UT = U-1

Such that

-1 = U L-1 UT

ij = Sk Uik Lk UTkj

 = Sk lk uk uk
T

-1 = Sk lk-1 uk uk
T

k =1

N-1

Pseudoinverse 

Eigenvalue decomposition of 

In component form
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expressed in terms of kth eigenvalue lk and kth eigenvector uk of 

Bahar et al. (1998) Phys Rev Lett. 80, 2733

FOR MORE INFO...

 
ij

T

kkkBkji Tk uuRR
1

)/3(]ΔΔ[
−

=• lg

Several modes contribute to dynamics

 
ijBji Tk

1
)/3(ΔΔ

−
= • ΓRR g

kji

k

ji ]ΔΔ[ΔΔ RRRR •• =

Contribution of mode k

Contribution of mode k



52Bahar et al. (1998) Phys Rev Lett. 80, 2733

Slowest (global) modes (most 
collective and softest)→ function

Fastest (local) modes (at highest 
packing density regions) → stability

FOR MORE INFO...

Several modes contribute to dynamics

The first mode selects 

the ‘easiest’ collective motion



Output from DynOmics
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1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Output from DynOmics
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1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Summary - Gaussian network model (GNM)

 =

1 N

N

1

Several modes of motion 

contribute to dynamics

Kirchhoff matrix for inter-residue contacts

 
ii

T

kkkBkii Tk uuRR
1

)/3(]ΔΔ[
−

=• lg

Contact: Rij < 10Å

 iiBi TkR 12
3

−=D )/()( gMSF of residue i

= <(DRi)2>



Recipe (GNM)
Obtain the coordinates of network nodes from the PDB
Write the corresponding Kirchhoff matrix 
Eigenvalue decomposition of  yields 

the eigenvalues l1, l2, l3,….., lN-1 (and l0 = 0) 
and eigenvectors u1, u2, u3,…..uN-1 (and u0)

Properties

the eigenvalues scale with the frequency squared (li ~ wi
2)

eigenvector uk is an N-dim vectors
the ith element of uk represents the displacement of node i in mode k
the eigenvectors are normalized, i.e. uk • uk = 1 for all k
as such, the squared elements of uk represent the ‘mobility’ distribution
dynamics results from the superposition of all modes
lk

-1/2 serves as the weight of uk → low frequency modes have high weights
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ignm.ccbb.pitt.edu

Database of GNM results

Li, Chang, Yang and Bahar (2016)

Nucleic Acids Res 44: D415-422
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Easy access to precomputed results for 

95% of the PDB including 

the largest structures beyond the 

scope of MD

protein-DNA/RNA complexes

biological assemblies (intact, 

biologically functional structures)

Easy to understand, visualize, make 

functional inferences for any structure

13.9% of the structures in 

the iGNM 2.0 (14,899 out of 

107,201) contain >103 nodes

The biological assembly of 39,505 

PDB structures is different from the  

default structure reported in the 

PDBs (as asymmetric unit)

Why use iGNM2.0? 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4702874_gkv1236fig1.jpg
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Collectivity (2D) for a given mode k is a measure of the degree of 

cooperativity (between residues) in that mode, defined as (*)

where, k is the mode number and i is the residue index. A larger 

collectivity value refers to a more distributive mode and vice versa. 

Usually soft modes are highly collective. 

(*) Brüschweiler R. Collective protein dynamics and nuclear spin relaxation. J. 

Chem. Phys. 1995;102:3396–340

Collective motions are functional

Information entropy associated 

with residue fluctuations in 

mode k



Motions in 3D

Anistropic Network Model 
(ANM)



3N x 3N Hessian of ANM replaces the NxN Kirchhoff
matrix of GNM – to yield mode shapes in 3N-d space
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Note:

VT = V-1

Such that

H-1 = V K-1 VT

Hij = Sk Vik Kk VTkj

H = Sk kk vk vk
T

H-1 = Sk kk-1 vk vk
T

k =1

3N-6

Pseudoinverse 

Eigenvalue decomposition of H

In component form
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ANM mode 1 (v1)

Mode 2

Mode 20

~k1

~k2

~k20

En
er

gy

Displacement

low-frequency

~ global modes

k1 < k2 < k3< …

Doruker et al. (2000) Proteins;  Atilgan AR et al. (2001) Biophys J.; Eyal et al. (2006) Bioinformatics 22, 2619

higher-frequency

Anisotropic Network Model (ANM)

H = Sk kk vk vk
T



5/13/2019

ANM covariance matrix (3Nx3N)

C11 C21 C13 C1N

C12 C22

CN1 CNN

C3N =

<DX1DX2> DX1DY2>  DX1DZ2>

 DY1DX2>  DY1DY2>  DY1DZ2>

 DZ1DX2>  DZ1DY2>  DZ1DZ2>

3N x 3N



ANM server
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http://anm.csb.pitt.edu/

Eyal et al., Bioinformatics 2015

http://anm.csb.pitt.edu/


Output from ANM server
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1cot

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol
http://anm.csb.pitt.edu/cgi-bin/anm2.1/anm_solver.cgi


Softest modes are functional

open

closed

tense (T) relaxed (R)

Experiments Theory

T→ R transition of Hb
intrinsically favored by global 
dynamics Xu, Tobi &  Bahar
(2003) J. Mol.  Biol. 333, 153;

E coli adenylate kinase 
dynamics: comparison of elastic 
network model modes with 15N-
NMR relaxation data. Temiz 
NA, Meirovitch E, Bahar I.
(2004)  Proteins 57, 468. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=15382240&ordinalpos=30&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
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DynOmics Portal http://dynomics.pitt.edu/

http://dynomics.pitt.edu/


Li et al (2017) Nucleic Acids Research 45:W374 - W380

enm.pitt.edu      

ENM Server



Workflow
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Environment



Thank you!

71



Session I: Plotting <(DRi)
2> and 

contributions of selected modes
 from prody import *

 from numpy import *

 from matplotlib.pyplot import *

 ion()

 anm, cot = calcANM('1cot', selstr='calpha')

 anm

 cot

 figure()

 showProtein(cot)

 figure() 

 showSqFlucts(anm[:2], label= '2 modes')

 showSqFlucts(anm[:20], label= '20 modes')

 legend()
72

Application to cytochrome c

PDB: 1cot

A protein of 121 residues

cmd

ipython



Session 2:  Viewing color-coded 

animations of individual modes

 writeNMD('cot_anm.nmd', anm, cot)

 Start VMD

 select Extensions → Analysis →Normal 
Mode Wizard

 Select ‘Load NMD File’
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Session 3: Cross-correlations 

<(DRi .DRj)> between fluctuations

 figure()

 showCrossCorr(anm[0])

 cross_corr = calcCrossCorr(anm[0])



Session 4: 

Viewing cross-correlations using VMD

 writeHeatmap('anm_cross1.hm', cross_corr)

 VMD – Load file

 Select cot_anm.nmd (from your local folder)

 Load HeatMap

 open anm_cross1.hm (from your local folder)

75


