Spatial Rule-based Modeling of Cellular Biochemistry with MCell/ BioNetGen/CellBlender

Jim Faeder, Ph.D. Univ. of Pittsburgh, MMBioS

Markus Dittrich, Ph.D. Pittsburgh Supercomputing Center, Carnegie Mellon University, MMBioS

GLBIO 2013 Tutorial, May 12

Goto <u>http://bionetgen.org/index.php/GLBIO2013</u> for slides and other materials

Overview

- Multiscale Challenge (Dittrich)
- Intro to National Center for Multiscale Modeling of Biological Systems (Faeder)
- BioNetGen Motivation and Intro (Faeder)
- BioNetGen/RuleBender Demo (Faeder)
- MCell Intro (Dittrich)
- Mcell/CellBlender Demo (Dittrich)
- Features in Progress and Q&A

v.nrbsc.org The Multiscale Computational Challenge									
Problem/ Method	Typical Application	Software Examples	Resolution (Scale)	Spatial Realism	Stochastic Realism	Time Step	Time Scale	Serial/ Parallel	Computer Time
Networks of Reactions/ Sets of ODEs	Metabolic or signaling pathways	Virtual Cell ECell, Gepasi XPPAUT	N/A (cell)	N/A	<none></none>	ms	ms - hrs	serial	minimal
Excitation/ Compartmental Circuit	Nerve signaling	NEURON GENESIS NEOSIM	μm - mm (cell - multicell)	low - medium	none	ms	ms - hrs	usually serial	usually low
Reaction Kinetics/ Stochastic	Gene regulation/ transcription	BioSpice StochSim XPPAUT MCell	N/A (cell)	N/A	high	ms	ms - hrs	serial	low
3-D Reaction Diffusion/ Finite Element	Flow models, calcium dynamics	Virtual Cell FIDAP Kaskade	<µm (cell)	medium - high	<none></none>	μs - ms	μs - sec	either	low - high
3-D Reaction Diffusion/ Monte Carlo	Micro- physiological processes	MCell ChemCell SmolDyn	nm – mm (subcell - cell)	high	high	ps - ms	μs - sec	either	low - high
Macromolecular Machinery/GNM	Collective dynamics	GNM ANM	Å - 100 nm (complexes)	high	none	N/A	<ns µs="" –=""></ns>	N/A (analytic)	minimal
Diffusion in Potential Field/Poisson - Nernst-Planck	Electrostatic interactions, ion channels	UHBD Delphi CHARMM	Å - nm (membrane proteins)	high (implicit solvent)	none	N/A	<ns µs="" –=""></ns>	parallel	low - medium
Macromolecular Motions/Brownian Dynamics (BD)	Conformational dynamics (in flow fields)	CHARMM GROMOS UHBD	Å - nm (macro- molecules)	high (implicit solvent)	high	5 - 10 fs	<ns µs="" –=""></ns>	parallel	medium - high
Molecular Structure/ Molecular Dynamics (MD)	Conformational dynamics & free energies	NAMD AMBER CHARMM GROMOS	Å (macro- molecules)	exact (explicit solvent)	exact	1 - 2 fs	<ns µs="" –=""></ns>	parallel	very high
Transition Dynamics/ Quantum Chem. + Mol. Mech. (QC/MM)	Enzyme reactions (make/break bonds)	pDynamo (AMBER CHARMM)	Å (molecules)	exact (explicit solvent)	exact	1 - 2 fs	<ns µs="" –=""></ns>	parallel	very high
Molecular Structure/ Ab initio simulations	Solution of the Schrodinger equation	Gaussian	<Å (electrons - atoms)	exact	exact	N/A	N/A	parallel	highest

Comparison with other cell simulation tools

Biomedical Technology Research Center (BTRC)

High Performance Computing for Multiscale Modeling of Biological Systems

Overarching biological theme:

Spatial organization
 Temporal evolution

of (neuro)signaling systems/events

From small molecules, to multimeric assemblies,

from 6 x 6 x 5 μ m³ cample of adult rat hipposampal stratum radiatum neuropil

to cellular architecture,

to neural circuits

Role of MCell in the BTRC

Comparison of MCell with other tools for spatial modeling of biological systems

Motivating example for Rule-Based Modeling

Molecular machines in the PSD

Estimated number of states of CAMKII-CaM complexes:

40¹²

Standard modeling protocol

1. Identify components and interactions.

Reactions to Differential Equations

Consider the reaction

$$R + L \xrightarrow{k_1} RL$$

The reaction rate is given by

$$\boldsymbol{v}_1 = k_1 \boldsymbol{R} \cdot \boldsymbol{L}$$

Ligand binding and aggregation

Rate of change of species concentrations (numbers) are

Here I have indicated that there may be additional terms from other reactions in the network. Reaction fluxes combine through *addition.*

B

Reaction Network Models

Reaction Network Scheme

Mathematical Formulation

EGF R_a ATP ADP ADP PLCy **R-PLP** 13 Shc PLCyP RP R-Sh 25 PLCy-I **→**Pi 16 15 ՏhP≮ R-ShP Grb R-G Grb 21 17 18 R-Sh-G Sh-G G-S SOS. 24 12 SOS RP SOS RP 22 20 R-Sh-G-S Sh-G-S R-G-S Ras

Ras

Rate Equations

 $k_1 \cdot [R] \cdot [EGF] - k_{-1} \cdot [R_a]$ $k_2 \cdot [\mathbf{R}_{\mathbf{a}}] \cdot [\mathbf{R}_{\mathbf{a}}] - k_{-2} \cdot [\mathbf{R}_{2}]$ $\tilde{k_3} \cdot [\tilde{R_2}] - \tilde{k_{-3}} \cdot [\tilde{RP}]$ $V_4 \cdot [\text{RP}]/(K_4 + [\text{RP}])$ $k_5 \cdot [\text{RP}] \cdot [\text{PLC}\gamma] - k_{-5} \cdot [\text{R-PL}]$ $k_6 \cdot [\text{R-PL}] - k_{-6} \cdot [\text{R-PLP}]$ $\vec{k_7} \cdot [\text{R-PLP}] = \vec{k_{-7}} \cdot [\text{RP}] \cdot [\text{PLC}\gamma\text{P}]$ $V_8 \cdot [\text{PLC}\gamma\text{P}]/(K_8 + [\text{PLC}\gamma\text{P}])$ $k_9 \cdot [\text{RP}] \cdot [\text{Grb}] - k_{-9} \cdot [\text{R-G}]$ $\vec{k}_{10} \cdot [\text{R-G}] \cdot [\text{SOS}] - \vec{k}_{-10} \cdot [\text{R-G-S}]$ $k_{11} \cdot [\text{R-G-S}] - k_{-11} \cdot [\text{RP}] \cdot [\text{G-S}]$ $k_{12}^{11} \cdot \text{[G-S]} - k_{-12} \cdot \text{[Grb]} \cdot \text{[SOS]}$ $k_{13}^{12} \cdot [\text{RP}] \cdot [\text{Shc}] - k_{-13} \cdot [\text{R-Sh}]$ $k_{14} \cdot [\text{R-Sh}] - k_{-14} \cdot [\text{R-ShP}]$ $k_{15} \cdot [\text{R-ShP}] - k_{-15} \cdot [\text{ShP}] \cdot [\text{RP}]$ $V_{16} \cdot [\text{ShP}]/(K_{16} + [\text{ShP}])$ $k_{17}^{10} \cdot [\text{R-ShP}] \cdot [\text{Grb}] - k_{-17} \cdot [\text{R-Sh-G}]$ $k_{18} \cdot [\text{R-Sh-G}] = k_{-18} [\text{RP}] \cdot [\text{Sh-G}]$ $k_{19} \cdot [\text{R-Sh-G}] \cdot [\text{SOS}] - k_{-19} \cdot [\text{R-Sh-GS}]$ $k_{20} \cdot [\text{R-Sh-G-S}] - k_{-20} \cdot [\text{Sh-G-S}] \cdot [\text{RP}]$ $\begin{array}{l} k_{21} \cdot [\mathrm{ShP}] \cdot [\mathrm{Grb}] - k_{-21} \cdot [\mathrm{Sh-G}] \\ k_{22} \cdot [\mathrm{Sh-G}] \cdot [\mathrm{SOS}] - k_{-22} \cdot [\mathrm{Sh-G-S}] \end{array}$ $k_{23}^{22} \cdot [\text{Sh-G-S}] - k_{-23} \cdot [\text{Sh-P}] \cdot [\text{G-S}]$ $\begin{array}{l} k_{23} & [\text{ISIN G} \subseteq \mathbb{S}] \\ k_{24} \cdot [\text{R-ShP]} \cdot [\text{G-S]} - k_{-24} \cdot [\text{R-Sh-G-S}] \\ k_{25} \cdot [\text{PLC}\gamma\text{P}] - k_{-25} \cdot [\text{PLC}\gamma\text{P-I}] \end{array}$

Differential Equations $d[EGF]/dt = -v_1$

 $d[R]/dt = -v_1$ $d[R_a]/dt = v_1 - 2v_2$ $d[R_2]/dt = v_2 + v_4 - v_3$ $d\mathbf{RP} / dt = v_3 + v_7 + v_{11} + v_{15} + v_{18} + v_{20} - v_4 - v_5 - v_9$ $d[R-PL]/dt = v_5 - v_6$ $d[\text{R-PLP}]/dt = v_6 - v_7$ $d[R-G]/dt = v_9 - v_{10}$ $d[R-G-S]/dt = v_{10} - v_{11}$ $d[R-Sh]/dt = v_{13} - v_{14}$ $d[\text{R-ShP}]/dt = v_{14} - v_{24} - v_{15} - v_{17}$ $d[R-Sh-G]/dt = v_{17} - v_{18} - v_{19}$ $d[\text{R-Sh-G-S}]/dt = v_{19} - v_{20} + v_{24}$ $d[G-S]/dt = v_{11} + v_{23} - v_{12} - v_{24}$ $d[ShP]/dt = v_{15} + v_{23} - v_{21} - v_{16}$ $d[Sh-G]/dt = v_{18} + v_{21} - v_{22}$ $d[PLC\gamma]/dt = v_8 - v_5$ $d[PLC\gamma P]/dt = v_7 - v_8 - v_{25}$ $d[PLC\gamma P-I]/dt = v_{25}$ $d[Grb]/dt = v_{12} - v_9 - v_{17} - v_{21}$ $d[Shc]/dt = v_{16} - v_{13}$ $d[SOS]/dt = v_{12} - v_{10} - v_{19} - v_{22}$

22 species / 25 reactions

Kholodenko et al., J. Biol. Chem. (1999)

Combinatorial complexity in a prototypical signaling module

Rules provide a scalable way to model molecular interactions

Rules ~ number of interactions << number of species

Rule-Based Modeling protocol

1. Identify components and interactions.

2. Translate into objects (molecules) and rules

- 3. Determine concentrations and rate constants
- $\begin{bmatrix} 10 \text{ nM} \\ 3 \text{ x } 10^4 \text{ per cell} \end{bmatrix} 4 \text{ x } 10^5 \text{ per cell}$

4. Simulate and analyze the model

SPECIFYING A RULE-BASED MODEL

Defining Molecules

Molecules are the basic objects in a BNG model

BIONETGEN Language

```
IgE(a,a)
FceRI(a,b~U~P,g2~U~P)
Lyn(U,SH2)
Syk(tSH2,lY~U~P,aY~U~P)
```

Components represent molecule elements

- Domains
- Motifs
- Properties

Defining Molecules

Molecules are the basic objects in a BNG model

BIONETGEN Language

IgE(a,a)
FceRI(a,b~U~P,g2~U~P)
Lyn(U,SH2)
Syk(tSH2,lY~U~P,aY~U~P)

Components may have different states representing

- posttranslational modifications
- conformational state

• ...

Binding

Molecules bind other molecules through components

FceRI(a, b~U!1, g2~U).Lyn(U!1)

```
Lyn(SH2!1,Cterm~P!1)
```

BIONETGEN Language

IgE(a,a!1).FceRI(a!1,b~U,g2~U)

Bonds are formed by linking two components. The '.' indicates a set of molecules forming a complex.

Components may have both states and bonds.

Bonds may occur within a molecule.

Defining Interaction Rules

component state change

Reactant patterns

select properties of each reactant molecule.

Reactant patterns

select properties of each reactant molecule.

Reactant patterns

select properties of each reactant molecule.

Because patterns can match many different species, each rule can generate many reactions.

Center and context

The **context** is the part that is necessary for the rule to happen but is unchanged.

Center and context

The **context** is the part that is necessary for the rule to happen but is unchanged.

Transphosphorylation

Composition of a Rule-Based Model

a Components

b Interactions

Molecules

begin molecules Lig(l,l) Lyn(U,SH2) Syk(tSH2,l~U~P,a~U~P) Rec(a,b~U~P,g~U~P) end molecules

Reaction Rules

BioNetGen language

```
begin reaction_rules
# Ligand-receptor binding
1 Rec(a) + Lig(l,l) <-> Rec(a!1).Lig(l!1,l) kp1, km1
Rec(a) + Lig(l,l) <-> Rec(a!1).Lig(l!1,l) kp1, km1
# Receptor-aggregation
2 Rec(a) + Lig(l,l!1) <-> Rec(a!2).Lig(l!2,l!1) kp2,km2
# Constitutive Lyn-receptor binding
3 Rec(b~Y) + Lyn(U,SH2) <-> Rec(b~Y!1).Lyn(U!1,SH2) kpL, kmL
...
```

Applications

- Immunoreceptor Signaling
- Growth factor receptor signaling
- Multivalent binding
- Scaffold effects
- Yeast pheromone signaling
- For a complete list of BioNetGen Applications see http://bionetgen.org/Model_Examples.

SIMULATING A RULE-BASED MODEL

Basic RBM workflow with BioNetGen

http://bionetgen.org

Faeder, Blinov, and Hlavacek, Methods Mol. Biol. (2009)

Automatic Network Generation

FceRI Model

Automatic Network Generation

FceRI Model

NFSIM*

Network-Free Stochastic Simulator

Sneddon et al. (2011) *Nat. Methods*, **8**, 177

http://emonet.biology.yale.edu/nfsim/

FceRI signaling models

Integration with **BIONETGEN**

Large Scale TCR Signaling Model

RuleBender

Built in Eclipse RCP

http://rulebender.org

Xu et al. Bioinformatics (2011); Smith et al. BioVis12 (Best Paper); BMC Bioinformatics (2012)

HANDS-ON TUTORIAL

Dimerization Model

Outer wall (wall)

Compartment Specification

Volume of surface compartment = Area*thickness thickness = 10 nm = 0.01 μ m

BACKUP EXAMPLE

parameters

molecule types

A BioNetGen model consists of a set of blocks, each beginning and ending with begin <blockname> / end <blockname> respectively.

seed species

observables

functions

reaction rules

parameters

molecule types

seed species

<u>parameters</u> – model constants are defined here. *The user is responsible for using a consistent set of units, which should be indicated in the associated comments.*

observables

functions

reaction rules

parameters

parameters

molecule types

<u>molecule types</u>– molecules, their components, and their allowed component states are declared here.

seed species

observables

functions

reaction rules

parameters

molecule types

begin molecule types
 E(s)
 S(Y~0~P)
end molecule types

observables

seed species

functions

reaction rules

parameters

$$E+S \xrightarrow[k_{-1}]{k_1} ES \xrightarrow{k_2} E+P$$

molecule types

seed speciesspecies initially present in the system at time t=0
followed by their initial concentration. Standard is all molecule
types in their "ground state" with basal expression levels. May
include complexes. All components of molecules that have states
must be in a specified state. All complexes must be connected.

functions

reaction rules

parameters

$$E+S \xrightarrow[k_{-1}]{k_1} ES \xrightarrow{k_2} E+P$$

molecule types

seed species

observables

begin seed species
functions E(s) E0
 S(Y~0) S0
 end seed species
reaction rules

parameters

$$E+S \xrightarrow[k_{-1}]{k_1} ES \xrightarrow{k_2} E+P$$

molecule types

<u>observables</u>– Defined sums of concentrations of species with specified properties. Syntax is <type> <name> <pattern>. Types considered here are Molecules and Species, which indicate weighted and unweighted sums respectively. These are used to define model outputs and are used as to make the default plot in RuleBender.

seed species

observables

functions

reaction rules

parameters

$$E+S \xrightarrow[k_{-1}]{k_1} ES \xrightarrow{k_2} E+P$$

molecule types

seed speciesbegin observablesMoleculesSU S(Y~0)MoleculesSP S(Y~P)MoleculesES E(s!1).S(Y!1)observablesend observables

functions

reaction rules

parameters

SU = sum of concentration of matches = [S(Y~0)]

parameters

ES = sum of concentration of matches = [E(s!1).S(Y~0!1)]

parameters

molecule types

<u>reaction rules</u>— Rules that generate reactions based on selecting reactants with specified properties and transforming them in a specified way with the specified rate law. Syntax is <name>: <reactants> <arrow> <products> <rate law>. Name is optional but useful.

observables

seed species

functions

reaction rules

parameters	$F + S \xrightarrow{k_1} FS \xrightarrow{k_2} F + P$
molecule types	$\underbrace{k_{-1}} E O \longrightarrow E + V$
seed species	begin reaction rules
observables	ESbind: \ E(s) + S(Y~0) <-> E(s!1).S(Y~0!1) kp1, km1
functions	ESconvert: \ E(s!1).S(Y~0!1) -> E(s) + S(Y~P) k2
reaction rules	end reaction rules

ра	ra	m	et	er	'S
----	----	---	----	----	----

E+S	$\xrightarrow{k_1} \xrightarrow{k_1 \longrightarrow k_{-1}}$	ES	$\xrightarrow{k_2} E + P$
-----	--	----	---------------------------

molecule types <u>actions</u>- Need not be enclosed in block. Come after model definition and specify simulation protocol for a model.

seed species generate_network({});
simulate_ode({t_end=>1000,n_steps=>100});

observables

functions

reaction rules