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Context within the BTRR 

• TR&D1: Molecular Modeling 
– Specific Aims 1 – 3  
– Today’s presentation is most relevant to 

• Subaim 1.4: “PGM-based analysis and modeling of 
ensembles of conformers” 

• Subaim 2.2: “Binding geometry and affinity 
computations for protein-protein and protein-ligand 
interactions using novel methods based on PGMs 
and/or mixed-resolution models with LBMC” 
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Context within the BTRR 

• Relevant C&SPs & DBP 
– C&SP3; DBP1 

• Our methods are mostly scale and data 
agnostic, and so they can also be used for 
TR&Ds 2 and 3 
– Analysis of trajectories 
– Generative Models   
– Parameter Estimation 
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Conformational Ensembles 

• Molecular Dynamics and Monte Carlo 
Simulation trajectories consist of molecular 
conformations sampled from an energy 
landscape 

Conformational Ensemble            Energy Landscape 

MD/MC 
Simulation 
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Motivation 

• Conformational Ensembles contain important 
information relevant to function 

• Unfortunately, extracting information from large 
ensembles (i.e., Big Data) can be challenging 

• Our goals are to:  
– Learn generative models from ensembles 
– Use those models to analyze, simulate, and 

(re)engineer molecular motions 
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From Conformational Ensembles 
to Generative Models 

• Each conformation corresponds to a point in 
a high-dimensional space; i.e., x 2 Rn 

– One dimension for each degree of freedom 
• Examples 

– Internal degrees of freedom 
– Cartesian coordinates 
– Atomic fluctuations from a mean conformation 
– Inter-atomic distance matrices 
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From Conformational Ensembles 
to Generative Models 

• Let X = {X1, …, Xn} be a set of random 
variables corresponding to the degrees of 
freedom for some system 

• A generative model is an encoding of P(X) 
– i.e., an encoding of the joint distribution  
– Thus, the ensemble is a sample from P(X) 
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From Conformational Ensembles 
to Generative Models 

• Let X = {X1, …, Xn} be a set of random               
variables corresponding to the degrees of     
freedom for some system 

• A generative model is an encoding of P(X) 
– i.e., an encoding of the joint distribution  

• Question: how can we compactly represent P(X)? 
• Answer: Probabilistic Graphical Models (PGM) 
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Probabilistic Graphical Models 

• A PGM, (G, ©),  is a factored encoding of a 
joint probability distribution P(X) over a set 
of variables X = {X1, …, Xn}, in terms of a 
graph G = (V,E) and a set of non-negative 
functions © = {Á1, …, Ám} 
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The Graphical Model Zoo 

• Bayes Nets 
• Hidden Markov Models 
• Kalman Filters 
• Dynamic Bayesian 

Networks 

• Ising Model 
• Potts Model 
• Markov Random Fields 
• Factor Graphs 

 

Etc 
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Factor Graphs 

Circles correspond to random variables 
Squares correspond to factors (functions) over the variables 

X1 X2 X3 X4 

Á1 Á2 Á3 
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Factor Graphs 

If each Ái is a positive function … 
Theorem (Hammersely and Clifford) 

X1 X2 X3 X4 
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Example 
X1 X2 X3 X4 
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Conditional Independencies 

• The topology of the graph defines a set of 
conditional independencies (CI) 
– Variables A and B are conditionally 

independent, given C (denoted A ? B | C)                
iff  P(A,B|C) = P(A|C)P(B|C) or, equivalently, 
P(A|B,C) = P(A|C) 

• Informally, CIs let us use ‘simpler’ 
functions to encode the joint distribution 

 
 



Carnegie Mellon 
School of Computer Science 

Example 
X1 X2 X3 X4 

)(),,(),,(1),,,( 43432232114321 xxxxxxx
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xxxxp φφφ=
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In this graph:  
X1 ? X4 | X2 , X3  
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Key Point 

• Any joint probability distribution over N 
variables can be represented via a suitably 
defined factor graph 

• User must specify (or learn from data): 
1. Topology of the graph 
2. Functional form and parameters of the factors 
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PGMs of Molecular Structures 

• The user gets to decide which degrees of 
freedom they wish to model 
– Internal degrees of freedom 
– Cartesian coordinates 
– Atomic fluctuations 
– Inter-atomic distances 
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Learning PGMs from Ensembles 
GAMELAN (GrAphical Models of Energy LANdscapes) 

• Input 
– Ensemble encoded as an n £ t matrix, D 

• n is the number of covariates X = {X1, …, Xn} 
• t is the number of conformations in the ensemble 

• Output : PGM (G, ©) over X that “fits” D 
– Algorithmic subtasks:  

1. Learn topology of the graphical mode, G = (V,E) 
2. Learn model parameters (i.e., ©), given G 
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Learning PGMs from Ensembles 
GAMELAN (GrAphical Models of Energy LANdscapes) 

• Optimization problem 
(G,©)* = argmaxG,© f(G, ©; D) = ∑t log PG,©(dt) - ¸R(G, ©) 
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• Optimization problem 
(G,©)* = argmaxG,© f(G, ©; D) = ∑t log PG,©(dt) - ¸R(G, ©) 

 
1st term reflects the PGM’s fit to the data 

Learning PGMs from Ensembles 
GAMELAN (GrAphical Models of Energy LANdscapes) 
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2nd term penalizes complex PGMs by counting  
the number of edges (and thus parameters) 

Learning PGMs from Ensembles 
GAMELAN (GrAphical Models of Energy LANdscapes) 

• Optimization problem 
(G,©)* = argmaxG,© f(G, ©; D) = ∑t log PG,©(dt) - ¸R(G, ©) 
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• Algorithms for solving optimization problem 
– Discrete Random Variables: BKLCL11 
– Continuous Random Variables 

• Angular Data (von Mises distribution): RKL11 
• Unimodal distributions: RKL12 
• Multi-modal Distributions: RL12; L14 

– Time-varying models: RMKL10; L14 
 

Learning PGMs from Ensembles 
GAMELAN (GrAphical Models of Energy LANdscapes) 

*P41 acknowledged 
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Using PGMs of  
Molecular Structures 

• Given a PGM, there are algorithms for: 
– Computing (approximate) free energies 

• KXL07; KL08; KBL09; KXL11; KGLB14 
– Visualizing entropic contributions to the free 

energy 
• KXL11 

– Sampling new configurations 
• RKL11 Heatmap of  

Configurational  
Entropy for  Lysozyme 

*P41 acknowledged 
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Using PGMs of  
Molecular Structures 

• Given a PGM, there are algorithms for: 
– (re)Designing Proteins 

• KGBL09; KGLB14 
– Predicting how the distribution changes under 

perturbations [i.e., P(X | Y) ] 
• Examples: allosteric regulation; effects of mutations 
• KXL11; RKL12; L14 

 

*P41 acknowledged 
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Example: Inference in   
GGM vs NPN [L14] 

• Data: 50 ¹s simulation of the engrailed homeodomain 
• Conditioned model on one variable, computed MLE of remaining 

variable 
 

argmax y P(y|x) argmax x P(x|y) 



Carnegie Mellon 
School of Computer Science 

Ongoing Work 

• Distribution GAMELAN Software 
– Custom-version for Anton Trajectories 

• PGM-based Markov-State Models 
• Writing manuscripts for semi- and non 

parametric models 
• Rory and Dan are integrating Dan’s high-

resolution rotamer libraries into our 
framework 
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Potential Applications  
to other areas of the BTRR 

• Analyzing MCELL/BNG trajectories 
• Alternative algorithms for learning PGMs 

from image data 
• Parameter estimation 

– Specifically, learning PGMs over model 
parameters 
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Thank you! 

• Students & Post Docs 
– Dr. Hetunandan Kamisetty 
– Dr. Narges Sharif Razavian 
– Subhodeep Moitra 

• Collaborators 
– Dr. Chris Bailey-Kellogg 
– Dr. Jaime Carbonell 
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Timeline 
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