Probabilistic Graphical Model Based Analysis and Modeling of Ensembles of Conformers

Christopher James Langmead School of Computer Science Carnegie Mellon University

Context within the BTRR

- TR&D1: Molecular Modeling
 - Specific Aims 1 3
 - Today's presentation is most relevant to
 - Subaim 1.4: "PGM-based analysis and modeling of ensembles of conformers"
 - Subaim 2.2: "Binding geometry and affinity computations for protein-protein and protein-ligand interactions using novel methods based on PGMs and/or mixed-resolution models with LBMC"

Context within the BTRR

- Relevant C&SPs & DBP
 C&SP3; DBP1
- Our methods are mostly scale and data agnostic, and so they can also be used for TR&Ds 2 and 3
 - Analysis of trajectories
 - Generative Models
 - Parameter Estimation

Conformational Ensembles

 Molecular Dynamics and Monte Carlo Simulation trajectories consist of molecular conformations sampled from an energy landscape

MD/MC Simulation

Conformational Ensemble

Energy Landscape

Motivation

- Conformational Ensembles contain important information relevant to function
- Unfortunately, extracting information from large ensembles (i.e., Big Data) can be challenging
- Our goals are to:
 - Learn generative models from ensembles
 - Use those models to analyze, simulate, and (re)engineer molecular motions

From Conformational Ensembles to Generative Models

- Each conformation corresponds to a point in a high-dimensional space; i.e., $x\in \mathbb{R}^n$
 - One dimension for each degree of freedom
- Examples
 - Internal degrees of freedom
 - Cartesian coordinates
 - Atomic fluctuations from a mean conformation
 - Inter-atomic distance matrices

From Conformational Ensembles to Generative Models

- Let X = {X₁, ..., X_n} be a set of random variables corresponding to the degrees of freedom for some system
- A generative model is an encoding of P(X)
 - i.e., an encoding of the joint distribution
 - Thus, the ensemble is a sample from P(X)

From Conformational Ensembles to Generative Models

- Let X = {X₁, ..., X_n} be a set of random variables corresponding to the degrees of freedom for some system
- A generative model is an encoding of P(X)
 i.e., an encoding of the joint distribution
- Question: how can we compactly represent P(X)?
- Answer: Probabilistic Graphical Models (PGM)

Probabilistic Graphical Models

A PGM, (G, Φ), is a factored encoding of a joint probability distribution P(X) over a set of variables X = {X₁, ..., X_n}, in terms of a graph G = (V,E) and a set of non-negative functions Φ = {φ₁, ..., φ_m}

The Graphical Model Zoo

- Bayes Nets Ising Model
- Hidden Markov Models Potts Model
- Kalman Filters
- Dynamic Bayesian Networks

- Markov Random Fields
- Factor Graphs

Etc

Circles correspond to random variables Squares correspond to factors (functions) over the variables

If each ϕ_i is a positive function ... Theorem (Hammersely and Clifford)

$$P(x) = \frac{1}{Z} \prod_{a \in \Phi} \phi_a(x_a)$$

$$Z = \sum_{X} \prod_{a \in \Phi} \phi_a(x_a)$$

Conditional Independencies

- The topology of the graph defines a set of conditional independencies (CI)
 - Variables A and B are conditionally independent, given C (denoted A \perp B | C) iff P(A,B|C) = P(A|C)P(B|C) or, equivalently, P(A|B,C) = P(A|C)
- Informally, CIs let us use 'simpler' functions to encode the joint distribution

School of Computer Science

Key Point

- *Any* joint probability distribution over N variables can be represented via a suitably defined factor graph
- User must specify (or learn from data):
 - 1. Topology of the graph
 - 2. Functional form and parameters of the factors

PGMs of Molecular Structures

- The user gets to decide which degrees of freedom they wish to model
 - Internal degrees of freedom
 - Cartesian coordinates
 - Atomic fluctuations
 - Inter-atomic distances

• Input

– Ensemble encoded as an $n \times t$ matrix, D

• n is the number of covariates $\mathbf{X} = \{\mathbf{X}_1, ..., \mathbf{X}_n\}$

- t is the number of conformations in the ensemble
- Output : PGM (G, Φ) over **X** that "fits" **D**
 - Algorithmic subtasks:
 - 1. Learn topology of the graphical mode, G = (V,E)
 - 2. Learn model parameters (i.e., Φ), given G

• Optimization problem

 $(G,\Phi)^* = \operatorname{argmax}_{G,\Phi} f(G,\Phi;D) = \sum_t \log P_{G,\Phi}(d_t) - \lambda R(G,\Phi)$

• Optimization problem

 $(G,\Phi)^* = \operatorname{argmax}_{G,\Phi} f(G, \Phi; D) = \sum_t \log P_{G,\Phi}(d_t) - \lambda R(G, \Phi)$

1st term reflects the PGM's fit to the data

• Optimization problem

 $(G,\Phi)^* = \operatorname{argmax}_{G,\Phi} f(G, \Phi; D) = \sum_t \log P_{G,\Phi}(d_t) - \lambda R(G, \Phi)$

2nd term penalizes complex PGMs by counting the number of edges (and thus parameters)

- Algorithms for solving optimization problem
 - Discrete Random Variables: BKLCL11
 - Continuous Random Variables
 - Angular Data (von Mises distribution): RKL11
 - Unimodal distributions: RKL12
 - Multi-modal Distributions: RL12; L14
 - Time-varying models: RMKL10; L14

*P41 acknowledged

Using PGMs of Molecular Structures

- Given a PGM, there are algorithms for:
 - Computing (approximate) free energies
 - KXL07; KL08; KBL09; KXL11; KGLB14
 - Visualizing entropic contributions to the free energy
 - KXL11
 - Sampling new configurations
 - RKL11

Heatmap of Configurational Entropy for Lysozyme *P41 acknowledged

Using PGMs of Molecular Structures

- Given a PGM, there are algorithms for:
 - (re)Designing Proteins
 - KGBL09; KGLB14
 - Predicting how the distribution changes under perturbations [i.e., P(X | Y)]
 - Examples: allosteric regulation; effects of mutations
 - KXL11; RKL12; L14

*P41 acknowledged

Example: Inference in GGM vs NPN [L14] Data: 50 μ s simulation of the engrailed homeodomain

• Conditioned model on one variable, computed MLE of remaining variable

Ongoing Work

- Distribution GAMELAN Software
 Custom-version for Anton Trajectories
- PGM-based Markov-State Models
- Writing manuscripts for semi- and non parametric models
- Rory and Dan are integrating Dan's highresolution rotamer libraries into our framework

Potential Applications to other areas of the BTRR

- Analyzing MCELL/BNG trajectories
- Alternative algorithms for learning PGMs from image data
- Parameter estimation
 - Specifically, learning PGMs over model parameters

Thank you!

- Students & Post Docs
 - Dr. Hetunandan Kamisetty
 - Dr. Narges Sharif Razavian
 - Subhodeep Moitra
- Collaborators
 - Dr. Chris Bailey-Kellogg
 - Dr. Jaime Carbonell

References

- [L14] C.J. Langmead "Generative Models of Conformational Dynamics" in "Protein Conformational Dynamics" Springer International Publishing, Eds. Han, Keli; Zhang, Xin; Yang, Mingjun, 2014, pp. 87-105
- [KGLB14] H. Kamisetty, B. Ghosh, C.J. Langmead, C. Bailey-Kellogg "Learning Sequence Determinants of Protein: Protein Interaction Specificity with Sparse Graphical Models". RECOMB pp129-143, 2014

Timeline

Timeline		Year1		Year2		Year3		Year4		Y5
Aim 1	1. Inclusion of lipid bilayer into network models									
	2. Dev of a hybrid methodology that integrates ENMs, MD & MC									
	3. Analysis suite for WE sim & application to neurosignaling proteins									
	4. Critical assessment and sampling quality									
	PGM-based analysis modeling of ensembles of conformers									
	6. Combined use of ENM-, WE- and PGM-based methods									
Aim 2	1. Improving QC methods in hybrid QC/MM									
	2. Affinity calculations using mixed resolution models with LBMC									
	3. PGM-based binding affinity calculations									
	4. Combining PGMs with statistical mechanical libraries									
	5. Elucidating allosteric signaling mechanisms & multimerization effects									
Aim 3	 Information transfer across scales - scale integration 									
	2. Application of WE methods to accelerate MCell simulations									
	3. Analysis of MCell trajectories using PGMs and PCA-based methods									
	4. Software optimization and parallelization									
	5. PGM-based software and API									
	6. Development of interfaces for easy access and interoperation									
	7. Alternative strategies: ENMs & resolution exchange applied to MCell									

Design Implementation and improvements Alpha testing User evaluation and refinements (beta testing)

School of Computer Science

