

Generative modeling of cellular components with deep learning techniques

Xiongtao Ruan 12/14/2017

Cellular Pattern Recognition

- Describe cell patterns using numerical features
- Do classification, etc. to assign terms
- First described in Boland, Markey & Murphy (1998) and Boland & Murphy (2001)
- Later popularized in packages such as CellProfiler, WND-CHARM, Ilastik, CellCognition, etc.

Drawback

 Image features are typically not transferable across images from different sources (widefield vs. confocal vs. superresolution, differences in magnification or camera pixel size, pixel bit depth, etc.)

Another drawback

- Term assignment/classification approaches are incomplete and do not make full use of information in images
- "Is this an apple or an orange?" is a discriminative question; can be answered with 1 or 2 features
- "What does an apple look like?" requires a generative model

Generative models?

 Human cognition examples Learn "mental model" Write Generated examples

Parametric models

 Computer vision problems such as this have traditionally been tackled by handconstructing models and learning their parameters from images

Parametric modeling (e.g., CellOrganizer)

"Deep" learning

 If large numbers of training examples are available, "deep learning" methods can learn directly from images without need for custom design

Deep learning models (e.g., autoencoders)

Images

MODELING CELL SHAPE WITHIN AND BETWEEN CELL TYPES

Methods for shape analysis

- Many methods have been described
- Descriptive
 - Features
- Generative
 - PCA on outline coordinates
 - Diffeomorphic distance embedding
 - Neural networks

Diffeomorphic model

- Use large deformation diffeomorphic metric mapping (LDDMM) algorithm to define distance that measures dissimilarity between shapes.
- The distances are put into the distance matrix and the shape space is inferred through embedding using Multidimensional scaling (MDS).

PCA based model

- Extract landmarks
- Perform PCA analysis on landmarks
- Use first k principle components as the model

Unsupervised deep learning

 Deep networks that try to learn representations of data without label information

Ruan & Murphy (2017) submitted

Comparison of methods

- All methods represent (encode) a given cell shape with a set of features/parameters
- We sought to compare the accuracy of representation (reconstruction error) across methods

Comparison of methods

- Used training and testing sets of 10,000 images each from HPA
- Calculated average difference between original testing image and image after encoding/decoding

	PCA	Diffeomorphic	AE FC	AE OPP
Error (%)	28.0	46.1	18.5	17.9
Time (hours)	< 0.2	~1 x 10 ⁴	~2	~2

Size, orientation and shape

- Autoencoder with OPP performed the best
- But all of these methods "mix" size, orientation and shape for each cell
- Can we get better performance by removing variation in size or orientation before training?

 Slight improvement when removing size

Improve training for small-scale data

 We can train the model with removal of size/orientation with fewer images

Train	Latent	2	3	4	5	6	7	8	9	10
num	dim	2	3	7	3	U	1	O	,	10
10k	Original	0.3629	0.3038	0.2448	0.2180	0.1974	0.1854	0.1688	0.1533	0.1528
5k	Original	0.3866	0.3094	0.2525	0.2227	0.2020	0.1833	0.1737	0.1611	0.1532
	Rescale		0.2971	0.2471	0.2148	0.1966	0.1785	0.1639	0.1520	0.1441
	Both			0.2650	0.2206	0.1977	0.1809	0.1641	0.1491	0.1387
2k	Original	0.4276	0.3348	0.2685	0.2353	0.2403	0.1969	0.1968	0.1769	0.2032
	Rescale		0.3456	0.2649	0.2253	0.2231	0.1925	0.1835	0.1678	0.1632
	Both			0.2850	0.2312	0.2028	0.1851	0.1699	0.1584	0.1540
1k	Original	0.4659	0.3901	0.3142	0.2567	0.2389	0.2328	0.2277	0.2147	0.2577
	Rescale		0.3804	0.2906	0.2452	0.2499	0.2185	0.2277	0.2171	0.1789
	Both			0.3060	0.2562	0.2187	0.2259	0.2014	0.1730	0.1596

Comparison within and among cell lines

- Next asked whether cultured lines differ in shape
- Constructed dataset from HPA for 10 cell lines (A-431, A-549, CACO-2, HEK 293, HeLa, Hep-G2, MCF-7, Pc-3, U-251 MG, and U-2 OS)
- Asked how distinguishable they were (average of all pairwise comparison) using different autoencoder representations

Distinguishability

 Cell lines are distinguishable using original images

- Better if aligned
- Not distinguishable if size is normalized

Shape Spaces for 10 cell lines

JOINT MODELING OF CELL AND NUCLEAR SHAPES

Question

- Johnson et al. 2015, showed cell and nuclear shapes are dependent in terms of prediction for each other with diffeomorphic model. The question is: could deep learning techniques capture the dependency relationship?
- From another point of view, the question is to see whether joint modeling can improve the prediction between each other.

Proposed network structures

- Separate models: model cell and nuclear shape separately.
- **Baseline**: represent cell and nuclear shapes as indexed image, and use a single autoencoder
- Conditional: nuclear dependent on cell
- Reverse conditional: cell dependent on nuclear
- Mutual conditional: both, concatenate the encoded information as input for decoders.
- Joint: two encoders joint to generate same encoded information

Illustration of network structures

Left: cell, right: nuclear

Illustration of network structures

Left: cell, right: nuclear

Evaluation criterion

- Use Jaccard index between original and reconstructed images for cell and nuclear shape, respectively.
- The overall error is the average of cell and nuclear errors.

Compare with PCA model

- Total latent dimension: 7
- For separate models, cell dimension: 4, nuclear dimension: 3

	PC	CA	Deep autoencoder		
	Separate	Joint	Separate	Joint	
Cell	0.2616	0.2274	0.2175	0.2509	
Nuclear	0.2827	0.2599	0.2483	0.1573	
Overall	0.2722	0.2437	0.2329	0.2041	

Comparison of joint errors

Left: small range, right: broader range

Size and orientation contribute to the dependency relationships

Size and orientation contribute to the dependency relationships

Reconstruction error for cell shapes is reduced with joint modeling

Reconstruction error for nuclear shapes is reduced with joint modeling

Conclusion

- For cell shape only, autoencoders outperform PCA and diffeomorphic model a lot.
- Scale and orientation are two major attributes for shapes and removing them improves the reconstruction accuracy.
- Joint modeling of cell and nuclear shapes shows better performances than separate models.
- Scale and orientation are also involved in the dependency relationship.

Future work

- Do more experiments, i.e. compare with diffeomorphic model, and also use other datasets to compare different methods.
- Continue to improve the performance of autoencoders for joint modeling, i.e. changing network structures, tuning hyperparameters.