
Generative modeling of cellular 
components with deep learning techniques

Xiongtao Ruan
12/14/2017



Cellular Pattern Recognition

• Describe cell patterns using numerical 
features

• Do classification, etc. to assign terms
• First described in Boland, Markey &  

Murphy (1998) and Boland & Murphy 
(2001)

• Later popularized in packages such as 
CellProfiler, WND-CHARM, Ilastik, 
CellCognition, etc.
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Drawback

• Image features are typically not transferable 
across images from different sources 
(widefield vs. confocal vs. superresolution, 
differences in magnification or camera pixel 
size, pixel bit depth, etc.)

3



Another drawback

• Term assignment/classification approaches 
are incomplete and do not make full use of 
information in images

• “Is this an apple or an orange?” is a 
discriminative question; can be answered 
with 1 or 2 features

• “What does an apple look like?” requires a 
generative model
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Generative models?

• Human cognition • Image-based models
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Parametric models

• Computer vision problems such as this have 
traditionally been tackled by hand-
constructing models and learning their 
parameters from images

6



X1

X2

X3

X4

…

Xn

…

p1
*

p2
*

…

pm
*

x1
*

x2
*

…

xm
*

P(pi|Ɵ)

Images Parameterizations

Cell Component
Distribution

Sampled
Parameterizations

Synthesized
Images

p = f(x) Ɵ = min d(Ɵ,{p1,…,pn}) p* = b(Ɵ) x = g(p)

p1

p2

p3

p4

pn

Parametric modeling (e.g., CellOrganizer)

7



“Deep” learning

• If large numbers of training examples are 
available, “deep learning” methods can learn 
directly from images without need for custom 
design
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MODELING CELL SHAPE WITHIN 
AND BETWEEN CELL TYPES
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Methods for shape analysis

• Many methods have been described
• Descriptive

– Features

• Generative
– PCA on outline coordinates
– Diffeomorphic distance embedding
– Neural networks
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Diffeomorphic model

• Use large deformation diffeomorphic metric mapping
(LDDMM) algorithm to define distance that measures
dissimilarity between shapes.

• The distances are put into the distance matrix and the
shape space is inferred through embedding using
Multidimensional scaling (MDS).
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PCA based model

 Extract landmarks 
 Perform PCA analysis on landmarks
 Use first k principle components as the 

model

13Stegmann & Gomez et al.



Unsupervised deep learning
• Deep networks that try to learn representations 

of data without label information
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Ruan & Murphy (2017) submitted
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Comparison of methods

• All methods represent (encode) a given cell 
shape with a set of features/parameters

• We sought to compare the accuracy of 
representation (reconstruction error) across 
methods
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PCA Diffeomorphic AE FC AE OPP

Error (%) 28.0 46.1 18.5 17.9
Time (hours) < 0.2 ~1 x 104 ~2 ~2

Comparison of methods

• Used training and testing sets of 10,000 images 
each from HPA

• Calculated average difference between original 
testing image and image after encoding/decoding
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Size, orientation and shape

• Autoencoder with OPP performed the best
• But all of these methods “mix” size, orientation and 

shape for each cell
• Can we get better performance by removing variation 

in size or orientation before training?
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• Compare errors 
for different 
numbers of 
latent 
dimensions

• Slight 
improvement 
when removing 
size
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Improve training for small-scale data

• We can train the model with removal of 
size/orientation with fewer images
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Comparison within and among cell lines
• Next asked whether cultured lines differ in 

shape
• Constructed dataset from HPA for 10 cell lines 

(A-431, A-549, CACO-2, HEK 293, HeLa, Hep-
G2, MCF-7, Pc-3, U-251 MG, and U-2 OS)

• Asked how distinguishable they were (average 
of all pairwise comparison) using different 
autoencoder representations
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Distinguishability

• Cell lines are 
distinguishable 
using original 
images

• Better if aligned
• Not 

distinguishable if 
size is 
normalized
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Shape Spaces for 10 cell lines
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JOINT MODELING OF CELL AND 
NUCLEAR SHAPES
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Question

• Johnson et al. 2015, showed cell and nuclear 
shapes are dependent in terms of prediction 
for each other with diffeomorphic model. The 
question is: could deep learning techniques 
capture the dependency relationship? 

• From another point of view, the question is to 
see whether joint modeling can improve the 
prediction between each other.
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Proposed network structures

• Separate models: model cell and nuclear shape 
separately.

• Baseline: represent cell and nuclear shapes as 
indexed image, and use a single autoencoder

• Conditional: nuclear dependent on cell
• Reverse conditional: cell dependent on nuclear
• Mutual conditional: both, concatenate the 

encoded information as input for decoders. 
• Joint: two encoders joint to generate same 

encoded information
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Illustration of network structures

separate conditional

Reverse 
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Left: cell, right: nuclear
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Illustration of network structures

Baseline

Left: cell, right: nuclear
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Evaluation criterion

• Use Jaccard index between original and 
reconstructed images for cell and nuclear 
shape, respectively. 

• The overall error is the average of cell and 
nuclear errors.  
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Compare with PCA model

• Total latent dimension: 7
• For separate models, cell dimension: 4, 

nuclear dimension: 3
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PCA Deep autoencoder

Separate Joint Separate Joint

Cell 0.2616 0.2274 0.2175 0.2509

Nuclear 0.2827 0.2599 0.2483 0.1573

Overall 0.2722 0.2437 0.2329 0.2041



Comparison of joint errors

• Left: small range, right: broader range
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Size and orientation contribute to the 
dependency relationships
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Size and orientation contribute to the 
dependency relationships
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Reconstruction error for cell shapes is 
reduced with joint modeling
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Reconstruction error for nuclear 
shapes is reduced  with joint modeling
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Conclusion

• For cell shape only, autoencoders outperform PCA 
and diffeomorphic model a lot. 

• Scale and orientation are two major attributes for 
shapes and removing them improves the 
reconstruction accuracy. 

• Joint modeling of cell and nuclear shapes shows 
better performances than separate models. 

• Scale and orientation are also involved in the 
dependency relationship. 
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Future work

• Do more experiments, i.e. compare with 
diffeomorphic model, and also use other 
datasets to compare different methods. 

• Continue to improve the performance of 
autoencoders for joint modeling, i.e. changing 
network structures, tuning hyperparameters. 
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