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Sailfish: Ultra-fast Gene Expression Estimation

Sailfish quickly determines the relative 
expression level of genes and their isoforms

GCTCAGTGTTGTTTGTCTGCTTGTTTGCGACGGAG 
CCCTATACCTTCTGCATAATGAATTAACTAGAAAT 
GCAGCAGCCACAGCGGGGAGAAGCCGCACCACTGC 
CCGGACCAGCTTTAGCAAGATCTCCAGCATCCACC 
ATCACCTCTGACGGTGTCAGTCATCGAGGACCGGC 
GATTTTTGAAGGACTAGATAGTTATTCTGGTCTCT 
CGGACCCAGCCAATCGGGATCGGCGGACGCCCATC 
GGAGAATCCACAGGAGGGAGAGGAGGAAAGGGAAC 
CGTTGGGACTAATGGGCTGGGGAGGAAGGTCATCG 
CAGAGTCATAGAGTTAATTAGCGTGTGTCAGGAGT 
CTCCGGGCAAGCCACCTAGGCCGTCCTGCGCTGTC 
CTGGTCTACTCAGCCTACTAAGGCAGCGGGTGGAG 
GTACAGTGGCACAATCTTGACTCACTGCAACCTCT 
GTCTGGTGCATGTGATGAAACCTGCAGCTTTATCG 
GAAAAAGGTTAGTGTTTGGGGGCCGGGGGAGGAGT 
GTGAGCTACCGCGCCCGGCCTATTTACTTTTCTTA 
CGTCTGCCCATAGGCGAAGATGCACACGTTGTATC 
GGTGACCTGGCGGGCACTACGCAATAGCAGCTGCC 
CGCGACTGTAGTCTCAGTTTCTTGGGAGGCTGAGG 
CCCTCCTTAACCTCTACTTCTACCTACGCCTAATC 
CCAATGTGGTCATAGGTGACAACCTTCTCCTCGCT 
CACGCCTGCAACAGCGTGAATGTGTGTACCACCGA 
GTGCCACCTCCCCCCGTCCCCGTGTTGCCAGGGGC 
GCCAAACTGGAACGTTTGCGAGAGAAGGATAAGCA 
CAGCTGAGGAAAGTACCCAGAGACTACACTACAGT 
GCCACCAGATCCTGGCGCTGTCAGAAGGCCTTGCA 
GACGTCCGGGAATTGCATCTGTTTTTAAGCCTAAT 
GCAAGCCATCCAGGTCACTGCAGCAGCCATACTCT 
AAACCAAAAACAAAAAAAACCAACAAAACCAAAAC 
GTGAGCTACCGCGCCCGGCCTATTTACTTTTCTTA 
CGTCTGCCCATAGGCGAAGATGCACACGTTGTATC 
GGTGACCTGGCGGGCACTACGCAATAGCAGCTGCC 
CGCGACTGTAGTCTCAGTTTCTTGGGAGGCTGAGG 
CCCTCCTTAACCTCTACTTCTACCTACGCCTAATC 
CCAATGTGGTCATAGGTGACAACCTTCTCCTCGCT 
CACGCCTGCAACAGCGTGAATGTGTGTACCACCGA 
GTGCCACCTCCCCCCGTCCCCGTGTTGCCAGGGGC 
GCCAAACTGGAACGTTTGCGAGAGAAGGATAAGCA 
CAGCTGAGGAAAGTACCCAGAGACTACACTACAGT 
GCCACCAGATCCTGGCGCTGTCAGAAGGCCTTGCA 
GACGTCCGGGAATTGCATCTGTTTTTAAGCCTAAT 
GCAAGCCATCCAGGTCACTGCAGCAGCCATACTCT 
AAACCAAAAACAAAAAAAACCAACAAAACCAAAAC

...

10m to 100m 
reads 
sampled from 
genes 
expressed 
during a 
condition

SAILFISH

• Measuring gene expression is a fundamental way to uncover organism 
response to stimuli & to determine gene function

RNA-seq:
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Sailfish: Ultrafast Gene Expression Quantification

A B

Sa
ilfi
sh

eX
pr
es
s

Patro, Mount, Kingsford, Nature Biotech, 2014

• Fast expectation 
maximization 
algorithm 

• Extremely 
parallelized 

• Uses small data 
atoms rather than 
long sequences 

• More tolerant of 
genetic variation 
between individuals
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Salmon

Better

More accurate Faster

• Estimates transcript expression from RNA-seq short reads 
• Two-stage streaming variational Bayes / EM 
• Novel lightweight alignment algorithms matches reads to transcripts

Patro, Duggal, Kingsford, http://biorxiv.org/content/early/2015/06/27/0215926

http://biorxiv.org/content/early/2015/06/27/021592


“Large-scale Salmon”

• Goal: quantify expression for 100,000 conditions in a consistent way

• We’ve quantified 
14,000+ experiments 
currently

• & developed 
approaches to search 
for similar expression 
vectors among different 
conditions
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Finding RNA-seq experiments expressing a given gene
Motivation: Which conditions express a novel gene → hypothesis about the 
function of that gene. 

SBT! STAR !
(1-thread)!

STAR !
(15-thread)!

Ti
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SRA-BLAST!

Our approach

Time to search 2652 
human blood, breast, 

and brain RNA-seq 
experiments for a 

1000nt gene:

Approach does not 
require that the 
sequence be a known 
gene (can search for 
ncRNA, novel isoforms, 
new genes).
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Things I’m not going to talk about  
(but ask me!)

• GHOST - fast, accurate way to compare two 
large biological networks

• PARANA - parsimonious estimation of network 
evolution (and prediction of interactions)
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Human healthy vs. cancer   (Baù et al. ’11)

A prominent feature emerges from all four clusters: the arms
are wound sinusoidally through space with roughly 1.5 period
repeats per arm. The partial mirroring between clusters 1 and 2
andclusters 3 and4has the effect of causing the arms tobeeither
intertwined (clusters 3 and 4) or separated (clusters 1 and 2). We
favor the intertwined conformation, as the corresponding model
clusters have lower variability (Figure S2C) and lower IMP objec-
tive function scores (Table S2). However, it is possible that both
conformations exist within a population of swarmer cells.

The parS Region Dictates the Orientation of the Entire
Caulobacter Chromosome
Our models suggest that the parS sites play a direct role in orga-
nizing the swarmer cell chromosome. Such a finding is con-
sistent with recent analyses that have suggested that these
sequence elements are specifically anchored to the Caulobacter
old cell pole through interactions with the ParB and PopZ
proteins (Bowman et al., 2008; Ebersbach et al., 2008; Toro
et al., 2008). Thus, we hypothesized that the orientation of the
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Figure 2. Modeling Reveals the 3D Architecture of the Swarmer Genome
(A) Outline of our modeling methodology. Restriction fragments were modeled as points connected by springs. The distance derived from the contact frequency

between pairs of fragments was used (i) to define the equilibrium length of the spring (see Supplemental Experimental Procedures) that connected these

fragments (ii). The 3D coordinates of all points were randomly initialized (iii), and optimization was performed to derive a structure that minimally violates these

equilibrium lengths (iv, a). This initialization and optimization procedure was repeated thousands of times to generate an ensemble of structures. These structures

were superimposed and grouped based upon their coordinates, yielding clusters of models in which the 3D coordinates of restriction fragments are structurally

very similar (iv, b).

(B) 3D density map representations of the four clusters from a wild-type swarmer modeling run. Each queried fragment is represented by a 3D Gaussian that has

a correlation coefficient >0.8 with the space this fragment occupies across all models within the cluster. The positioning of the maximally polar fragment (located

!7 kb from the parS) elements is indicated in orange.

(C) The centroid model of swarmer clusters 1–4. For more information regarding these clusters, see Figure S2 and Table S2.

Molecular Cell

The 3D Architecture of a Bacterial Genome

256 Molecular Cell 44, 252–264, October 21, 2011 ª2011 Elsevier Inc.

Caulobacter crescentus  (Umbarger et al. ’11)

DNA
S. Cerevisiae (Duan et al. ’10)

Genome Spatial Arrangement
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• Measured in Drosophila, mouse, human,… 

• Implicated in gene regulation and 
transcription 

• Undergoes important changes during cell 
development 

• Associated with cancer SCNA  
(e.g. Fudenberg, 2011)

[Cavalli 2012]
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However, when placed in the specific context defined by genome 
domains (that is, open chromatin, which allows access of regula-
tory factors that cannot access the same binding site in condensed 
chromatin), the motif becomes functional. Similar principles apply 
at higher levels of organization. A gene poised for activity may be 
silent unless—either by yet unknown, dedicated mechanisms or by 
chance—it is placed near a nuclear region of active transcription 
(Fig. 3). Such a modulatory function of genome topology is consist-
ent with the observed stochastic nature of gene expression.

Considering genome topology as a modulatory rather than a deter-
ministic regulator of genome function leads to a self-organization 
model in which genome activity drives the formation of genome 
topology, and the resulting organization features, in turn, affect 
genome function (Fig. 3). At the level of the chromatin fiber, physi-
cal domains are formed by the boundaries that separate active from 
inactive regions; these domains fold into higher-order domains in 
chromosome territories and provide functionally distinct chromatin 
environments. At the next level of organization, multiple domains on 
separate chromosomes associate to form 3D spatial arrangements. 
Their assembly is driven by the macromolecular machines that regu-
late genome function, leading to the formation of nuclear structures 
such as nuclear bodies or chromatin domains and territories. In turn, 
these structures generate nuclear microenvironments, and the bio-
availability of regulatory factors in these domains in turn affects the 
activity of the associated genome regions. The topological features 
of the genome are heritable and are passed on during the life of cells 
and to their progeny as long as the functional status of the cell does 
not change—for example, during differentiation, development or 
in disease. However, given the inherent plasticity of protein-DNA 
and DNA-DNA interactions, even in terminally differentiated states 
strong physiological or environmental stimuli may switch chromatin 
domains, allowing for the possibility of cell reprogramming. This 
model predicts that higher-order genome organization is primarily 
driven by genome activity.

A key feature of a function-structure-function model is its self-
 reinforcing and self-propagating nature. Gene expression programs 
are obviously to a large extent hard-wired in the primary DNA 
sequence, but additional mechanisms such as epigenetic regulation 
and genome topology superimpose additional layers of regulation. 
The function of these secondary mechanisms is twofold. On the one 
hand, they maintain and perpetuate the ground state generated by 
the genetic information by acting as a buffer to potentially detri-
mental environmental influences, such as cellular stress or aberrant 
 signaling. This is achieved by generating structural genome features 

such as euchromatin or heterochromatin domains that protect the 
 status quo by accumulating co-regulated genome regions in a com-
mon environment, such as chromatin domains. The structure rein-
forces the activity status of the genes in the domain. On the other 
hand, epigenetic mechanisms may change the ground state of the 
system by placing genes in a new environment that alters their 
function, such as by placing an active gene into a heterochromatic, 
repressed region. In this case, the structural features of the chromatin 
domain impose their function on the genome region. The system 
becomes self-reinforcing in that the newly added genome region 
adds to, and strengthens, the features of the chromatin domain. If the 
chromatin state is heritable, for example, when specified by DNA or  
histone modifications, the system also becomes self-propagating over 
 multiple generations (Fig. 3).

Conclusions
Great strides have been made in the last decade in uncovering the 
principles by which genomes are organized in the cell. Our thinking 
about the functional role of genome topology has been greatly shaped 
by the concept of epigenetics, which has emerged in parallel and  
has popularized the notion that genomes and their sequence are not 
absolutely deterministic. We are at a point where we know enough 
about some of the key features of genome organization and we have  
the technology, particularly imaging and genome-wide mapping  
methods, to make the next step. The focus must now be on under-
standing the physiological and pathological relevance of genome 
topology, and there are clear indications of its importance in disease.  
Many histone modifiers and chromatin remodelers that affect chro-
matin fiber structure have been identified as disease agents, including  
in numerous cancers; global genome architecture is dramatically 
altered in many diseases; and one of the most intriguing families 
of human diseases are the laminopathies caused by mutations in 
lamin proteins. The path forward is two-pronged. On the one hand, 
genome-topology features at all levels must be comprehensively 
mapped in disease and physiologically relevant samples, and com-
pared to gene expression and epigenetic profiles as well as morpho-
logical and cellular features, in an attempt to link genome topology 
to functional readouts. On the other hand, experiments to perform 
targeted manipulations of chromatin structure and genome topology 
are required to fully uncover the mechanistic basis for all levels of 
genome topology. Both approaches are now feasible and should lead 
to uncovering the functional implications of genome topology. Given 
the wealth of molecular information we have amassed on genome 
function, combined with the detailed cell biological characterization 

Figure 3 A model depicting the interplay  
of genome structure and function.  
The transcriptional activity of genome regions 
determines the formation of chromatin domains 
(red and green). Domains are defined patterns of 
nucleosome positioning, histone modifications 
and differential higher-order folding.  
The activity state of a ‘neutral’ genome region 
(black) is determined by its physical association 
with either an active or repressive environment, 
and these long-range contacts may thus change 
functional states (indicated by transformation of 
the portion of the black chromosome closest to a 
repressive (red) domain of another chromosome 
to pink). The functional status of the chromatin 
domain feeds back and reinforces its structural features (self-enforcement). Chromatin structure-function relationships are heritable (self-propagation). 
However, given the inherent plasticity of the system, even in terminally differentiated states strong physiological or environmental stimuli may switch 
chromatin domains, allowing for the possibility of cell reprogramming.
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[Dixon 2012]
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structure is not only consistent with the current understanding of 
the mechanisms of SCNA initiation17, but provides insight into how 
spatial proximity may be arrived at through chromosomal architec-
ture and the significance of chromosomal architecture for patterns of 
SCNAs observed at a genomic scale.

RESULTS
Patterns of chromatin structure in the SCNA landscape
The initial motivation for our study was an observation that the length 
of focal SCNAs and the length of chromosomal loops (that is, intra-
chromosomal contacts) have similar distributions (Fig. 1b,c), both 
exhibiting ~1/L scaling. Analysis of HiC data for human cells2 showed 
that the mean contact probability over all pairs of loci a distance L 
apart on a chromosome goes as PHiC (L)~1/L for a range of distances  
L = 0.5 to 7 Mb. This scaling for mean contact probability was shown 
to be consistent with a fractal globule (FG) model of chromatin archi-
tecture. Similarly, the mean probability to observe a SCNA of length 
L is approximately PSCNA (L)~1/L for the same range of distances  
L = 0.5 to 10 Mb, as previously noted1. Mathematically, the observa-
tion that the mean probability to observe an SCNA decays with its 
length is quite important. If two SCNA ends were chosen randomly 
within a chromosome arm, the mean probability to observe an SCNA 
of length L would remain constant. Positive selection, which tends 
to amplify oncogenes or delete tumor suppressors, again does not 
give rise to a distribution whose mean decreases with length. Either 
purifying selection or a length-dependent mutational mechanism is 
required to observe this result.

The connection between 3D genomic architecture and SCNA 
structure goes beyond the similarity of their length distributions: loci 
that have higher probability of chromosomal contacts are also more 
likely to serve as SCNA end points (Fig. 2). To quantitatively deter-
mine the relationship between 3D genomic architecture and SCNA,  
we converted both data sets into the same form. For each chromosome,  

we represent HiC data as a matrix of counts of spatial contacts 
between genomic locations i and j as determined in the GM06990 cell  
line using a fixed bin size of 1 Mb2. Similarly, we constructed SCNA 
matrices by counting the number of amplifications or deletions that 
start at genomic location i and end at location j of the same chromo-
somes across the 3,131 tumors. Figure 2 presents HiC and SCNA 
matrices (heatmaps) for chromosome 17. Away from centromeric 
and telomeric regions, which were not considered in this analysis, 
the SCNA heatmap appears similar to the HiC heatmap (Pearson’s  
r = 0.55, P < 0.001, see Supplementary Table 1 for other chromo-
somes). In particular, regions enriched for 3D interactions also appear 
to experience frequent SCNAs. Because the Pearson correlation  
coefficient is not suited for comparisons of frequencies of rare events 
like SCNAs, for further analysis we employed the Poisson likelihood, 
a widely used method to statistically analyze rare events18.

Model selection
To further test the role of chromosome organization for the genera-
tion of SCNAs, we developed a series of statistical models of pos-
sible SCNA-generating processes, computed the Poisson likelihoods 
of the SCNA data given these models (Online Methods, equation 
(6)) and performed model selection using their Bayesian Information 
Criterion (BIC) values, which is the log-likelihood of a given model 
penalized by its number of fitting parameters (Online Methods, 
equation (7)). The models we considered take into account different 
mechanisms of the generation of SCNA, with a mutation rate that is 
either uniform in length (Uniform), derived from experimentally 
determined chromatin contact probabilities (HiC) or derived from 
contact probability in the fractal globular chromatin architecture 
(FG). In contrast to HiC, which provides contact probability for any 
pair of loci, the FG model specifies only how the contact probability 
decays as a function of the distance between the loci, irrespective of 
their location along a chromosome.

b c
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Figure 1 3D proximity as mechanism for SCNA formation. (a) Model of how chromosomal architecture and selection can influence observed patterns of 
SCNAs. First, spatial proximity of the loop ends makes an SCNA more likely to occur after DNA damage (yellow lightning bolts) and repair. Next, forces 
of positive selection and purifying selection act on SCNAs that have arisen (deletions (blue) or amplifications (red)), leading to their ultimate fixation or 
loss. Observed SCNAs in cancer thus reflect both mutational and selective forces. Inset illustrates looping in a simulated fractal globule architecture. 
Two contact points are highlighted by spheres and represent potential end points of SCNAs. (b) SCNA length distribution for 60,580 less-recurrent 
SCNAs (39,071 amplifications and 21,509 deletions) mapped in 3,131 cancer specimens from 26 histological types1. Squares show mean number 
of amplification (red) or deletion (blue) SCNAs after binning at 100 kb resolution (and then averaged over logarithmic intervals). Light magenta lines 
show ~1/L distributions. Gray line shows the best fit for purifying selection (equation (4) with a uniform mutation rate). Thick dark purple line shows 
best fit for deletions for FG+sel. (c) The mean number of contacts between two loci distance L apart on a chromosome at 100 kb resolution. Contacts are 
obtained from intrachromosomal interactions of 22 human chromosomes characterized by the HiC method (human cell line GM06690)2. Shaded area 
shows range from 5th and 95th percentiles for number of counts in a 100-kb bin at a given distance. The mean number of contacts is shown by blue 
line. Light magenta line shows ~1/L scaling also observed in the fractal globule model of chromatin architecture. Blue dashed line provides a baseline 
for contact frequency obtained as interchromosomal contacts in the same data set.

[Fudenberg 2011]

Chromatin structure is important
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(Dekker et al. ‘13)

Compact, contiguous 
regions = topological 

domains (TADs)

“A” compartments 
= more open and 
loosely compacted

“B” compartments 
= more dense 

regions

12



Why are TAD’s Interesting?

• Stand out as highly-reproducible feature of Hi-C 
matrices 

• Often conserved across species 

• Seem to be a key building block of hierarchical 
organization of chromatin structure 

• Play a crucial role in facilitating gene co-regulation 
and robustness of gene expression

13



Hi-C: High Resolution, Genome-Wide Structure

Error correct,
Normalize, &
Filter

Chemically bond spatially close 
regions of genome across millions of 
cell nuclei

Perform high throughput 
sequencing to obtain code 
of nearby regions

0 1Mbp

3C matrix

2Mbp 3Mbp

1Mbp

2Mbp

3Mbp

(i,j) - # of times DNA at fragment i 
spatially co-located with DNA at 

fragment j. 

1Mbp

Introduced 2002, whole-genome 2009

distance is related to 1/
frequency
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Domain-finding Methods
• Directionality Index HMM (Dixon et al. 2012): imbalance 

between upstream and downstream interactions.  

• Distance-Scaling (Sexton et al. 2012): insulation score 
between upstream and downstream fragments 

• Armatus (Filippova, 2013): multiscale domains identified 
using a interaction density score for the block diagonal. 

• HiCSeg (Levy-Leduc 2014): Maximum likelihood formulation 
to segment Hi-C matrix. 

• Arrowhead (Rao et al. 2014): directionality bias at a particular 
distance d. Results in modified contact matrix that looks like it 
has arrowheads. Heuristically finds domains thereafter.
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Armatus
(Filippova, Patro, Duggal, Kingsford. ‘14)
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• First program for multiscale analysis of domain structure 

• Directly encodes/specifies quality of domain 

• Handles uncertainty by generating multiple near-optimal 
solutions  

• Order of magnitude more efficient than original single-
scale analysis 

• Efficient enough for highest-resolution data to date 

• Requires only a single parameter 

Armatus Features
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Domains at Multiple Scales

IMR90, chr1

alternative 
domains

Dixon et al. 
domains
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How to find multiscale domains?
1. Find domains: dense regions of high-frequency interactions 
at different resolutions

sharethisfeatureofclassicalinsulators.Aclassicalboundaryelement
isalsoknowntostopthespreadofheterochromatin.Therefore,we
examinedthedistributionoftheheterochromatinmarkH3K9me3in
humansandmiceinrelationtothetopologicaldomains12,13.Indeed,
weobserveaclearsegregationofH3K9me3attheboundaryregions
thatoccurspredominatelyindifferentiatedcells(Fig.2d,eand
SupplementaryFig.11).Astheboundariesthatweanalysedin

Fig.2darepresentinbothpluripotentcellsandtheirdifferentiated
progeny,thetopologicaldomainsandboundariesappeartopre-mark
theendpointsofheterochromaticspreading.Therefore,thedomains
donotseemtobeaconsequenceoftheformationofheterochromatin.
Takentogether,theaboveobservationsstronglysuggestthatthetopo-
logicaldomainboundariescorrelatewithregionsofthegenomedis-
playingclassicalinsulatorandbarrierelementactivity,thusrevealinga
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Figure1|TopologicaldomainsinthemouseEScellgenome.a,Normalized
Hi-Cinteractionfrequenciesdisplayedasatwo-dimensionalheatmap
overlayedonChIP-seqdata(fromY.Shenetal.,manuscriptinpreparation),
directionalityindex(DI),HMMbiasstatecalls,anddomains.Forboth
directionalityindexandHMMstatecalls,downstreambias(red)andupstream
bias(green)areindicated.b,Schematicillustratingtopologicaldomainsand
resultingdirectionalbias.c,Distributionofthedirectionalityindex(absolute
value,inblue)comparedtorandom(red).d,Meaninteractionfrequenciesatall
genomicdistancesbetween40kbto2Mb.Above40kb,theintra-versusinter-
domaininteractionfrequenciesaresignificantlydifferent(P,0.005,Wilcoxon
test).e,Boxplotofallinteractionfrequenciesat80-kbdistance.Intra-domain
interactionsareenrichedforhigh-frequencyinteractions.f–i,Diagramofintra-
domain(f)andinter-domainFISHprobes(g)andthegenomicdistance
betweenpairs(h).i,Barchartofthesquaredinter-probedistance(fromref.6)
FISHprobepairs.mESC,mouseEScell.Errorbarsindicatestandarderror
(n5100foreachprobepair).
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share this feature of classical insulators. A classical boundary element
is also known to stop the spread of heterochromatin. Therefore, we
examined the distribution of the heterochromatin mark H3K9me3 in
humans and mice in relation to the topological domains12,13. Indeed,
we observe a clear segregation of H3K9me3 at the boundary regions
that occurs predominately in differentiated cells (Fig. 2d, e and
Supplementary Fig. 11). As the boundaries that we analysed in

Fig. 2d are present in both pluripotent cells and their differentiated
progeny, the topological domains and boundaries appear to pre-mark
the end points of heterochromatic spreading. Therefore, the domains
do not seem to be a consequence of the formation of heterochromatin.
Taken together, the above observations strongly suggest that the topo-
logical domain boundaries correlate with regions of the genome dis-
playing classical insulator and barrier element activity, thus revealing a
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Figure 1 | Topological domains in the mouse ES cell genome. a, Normalized
Hi-C interaction frequencies displayed as a two-dimensional heat map
overlayed on ChIP-seq data (from Y. Shen et al., manuscript in preparation),
directionality index (DI), HMM bias state calls, and domains. For both
directionality index and HMM state calls, downstream bias (red) and upstream
bias (green) are indicated. b, Schematic illustrating topological domains and
resulting directional bias. c, Distribution of the directionality index (absolute
value, in blue) compared to random (red). d, Mean interaction frequencies at all
genomic distances between 40 kb to 2 Mb. Above 40 kb, the intra- versus inter-
domain interaction frequencies are significantly different (P , 0.005, Wilcoxon
test). e, Box plot of all interaction frequencies at 80-kb distance. Intra-domain
interactions are enriched for high-frequency interactions. f–i, Diagram of intra-
domain (f) and inter-domain FISH probes (g) and the genomic distance
between pairs (h). i, Bar chart of the squared inter-probe distance (from ref. 6)
FISH probe pairs. mESC, mouse ES cell. Error bars indicate standard error
(n 5 100 for each probe pair).
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Figure 2 | Topological boundaries demonstrate classical insulator or
barrier element features. a, Two-dimensional heat map surrounding the Hoxa
locus and CS5 insulator in IMR90 cells. b, Enrichment of CTCF at boundary
regions. c, The portion of CTCF binding sites that are considered ‘associated’
with a boundary (within 620-kb window is used as the expected uncertainty
due to 40-kb binning). d, Heat maps of H3K9me3 at boundary sites in human
and mouse. e, UCSC Genome Browser shot showing heterochromatin
spreading in the human ES cells (hESC) and IMR90 cells. The two-dimensional
heat map shows the interaction frequency in human ES cells. f, Heat map of
LADs (from ref. 14) surrounding the boundary regions. Scale is the log2 ratio of
DNA adenosine methylation (Dam)–lamin B1 fusion over Dam alone (Dam–
laminB1/Dam).
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2. Build consensus: pick the most persistent domains to 
form a single collection

0 1Mbp 3Mbp2Mbp
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A - symmetric Hi-C matrix

How to find multiscale domains?
0 1Mbp 2Mbp 3Mbp

1Mbp

2Mbp

3Mbp

1. Find domains: dense non-overlapping 
square blocks along the diagonal

max

X

domains

q(domain)

2. Build consensus: pick domains across 
resolutions to form a single collection of non-overlapping blocks

max

X

domains at

various scales

p(domain)
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Score dense blocks on the diagonal

mean weight as a function of block 
size and resolution

s(k, l, �) =

Pl
g=k

Pl
h=g+1 Agh

(l � k)�

block weight

block score (can be negative)

q(k, l, �) = s(k, l, �)� µ(size, �)

.
.

k l

k

l

...

...
block size
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Resolution parameter

resolution

block weight

� = 2 :

� = 1 :

� = 0 : denominator becomes 1

as used in [Goldberg 84]

similar to weighted edge density

|E|/|V |

|E|/
✓
|V |
2

◆

s(k, l, �) =

Pl
g=k

Pl
h=g+1 Agh

(l � k)�

big domains

small domains
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Resolution-Specific DP

Filippova et al. Algorithms for Molecular Biology 2014, 9:14 Page 3 of 11
http://www.almob.org/content/9/1/14

in sets of larger domains and higher γ corresponds to sets
of smaller domains. Since domains are required to contain
consecutive fragments of the chromosome, this problem
differs from the problem of clustering the graph of 3C
interactions induced by A, since such a clustering may
place non-contiguous fragments of the chromosome into
a single cluster. In fact, this additional requirement allows
for an efficient optimal algorithm.

Problem 2 (Consensus domains across resolutions).
Given A and a set of resolutions " = {γ1, γ2, . . .}, iden-
tify a set of non-overlapping domains Dc that are most
persistent across resolutions in ":

max
∑

[ai,bi]∈Dc

p(ai, bi, "), (2)

where Dc is the set of non-overlapping persistent domains
across resolutions, and p(ai, bi, ") is the persistence of
domain [ai, bi] corresponding to how often it appears
across resolutions.

Algorithms
Domain identification at a particular resolution
Since each row and corresponding column in a 3C inter-
action matrix encodes a genomic position on the chro-
mosome, we can write the solution to objective (1) as a
dynamic program:

OPT1(l) = max
k<l

{OPT1(k − 1) + max{q(k, l, γ ), 0}}, (3)

where OPT1(l) is the optimal solution for objective (1)
for the sub-matrix defined by the first l positions on the
chromosome (OPT1(0) = 0). The choice of k encodes the
size of the domain immediately preceding location l. We
define negative-scoring domains as non-domains and, as
such, only domains with q > 0 in the max term in (3) are
retained.

Our quality function q is:
q(k, l, γ ) = s(k, l, γ ) − µs(l − k), (4)

where

s(k, l, γ ) =
∑l

g=k
∑l

h=g+1 Agh
(l − k)γ

(5)

is a scaled density of the subgraph induced by the inter-
actions Agh between genomic loci k and l. When γ = 1,
the scaled density is the weighted subgraph density [12]
for the subgraph induced by the fragments between k and
l, which is the upper-triangular portion of the subma-
trix defined by the domain in the interval [k, l] divided
by the scaled length (l − k)γ of the domain. When
γ = 2, the scaled density is half the internal den-
sity of a graph cluster [13]. For larger values of γ , the
length of a domain in the denominator is amplified, hence,
smaller domains would produce larger objective values

than bigger domains with similar interaction frequencies.
Equation (4) is the zero-centered sum of (5). µs(l−k) is the
mean value of (5) over all sub-matrices of length l−k along
the diagonal of A, and can be pre-computed for a given A.
We disallow domains where there are fewer than 100 sub-
matrices available to compute the mean. By doing this, we
are only excluding domains of size larger than n − 100
fragments, which in practice means that we are disallow-
ing domains that are hundreds of megabases long. Values
for the numerator in (5) are also pre-computed using an
efficient algorithm [14], resulting in an overall run-time of
O(n2) to compute OPT1(n).

Enumerating multiple optimal and near-optimal solutions
The set of domains found by the dynamic program in
Equation 3 may not be the only set obtaining the max-
imum value of OPT1(·). In fact, there may be multiple
optimal solutions and solutions which are near optimal.
The domain structures that appear in alternative optimal
or near optimal solutions are of interest, especially if they
are significantly different, since they represent a poten-
tially diverse array of alternative domains that are only
precluded from the initially computed optimal solution as
a result of the arbitrary breaking of ties that takes place in
the dynamic program. We wish to be able to account for
such alternative solutions by enumerating them efficiently
and in order of a decreasing solution score.

Since Equation 3 will allow ‘non-domains’ (i.e. intervals
on the chromosome with q(k, l, γ ) ≤ 0) to be split arbi-
trarily without affecting the optimal score, we modified
the procedure as shown in Equation 6 to explicitly disallow
adjacent non-domains:

OPT′
1(l) = max

{
maxk<l{OPTD(k − 1)}
OPTD(l), (6)

where the optimal score of l ending a domain is
OPTD(l) = max

k<l
{OPT′

1(k − 1) + q′(k, l, γ )}, (7)

and the quality function for the domain is

q′(k, l, γ ) =
{

q(k, l, γ ) if q(k, l, γ ) > 0
− ∞ otherwise. (8)

OPTD(l) = OPT′
1(l) = 0 for l ∈ {0, 1}. In Equation 6,

maxk<l OPTD(k − 1) represents the optimal score at l
where l ends a non-domain region. This solution to Prob-
lem 1 produces a set of domains with the same opti-
mal score as Equation 3, but guarantees that alternative
optimal and near-optimal domain sets do not contain
non-domains that are adjacent.

To efficiently identify alternative optimal and near-
optimal solutions, we use the fact that the dynamic pro-
gram in Equation (6) can be conceptually represented as a
directed acyclic graph G where each OPT′

1(l) and OPTD(l)

End in a non-domain

End in a domain
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Building a consensus of domains

2Mbp 3Mbp1Mbp0

domain

domains = intervals, occurrence = weight

extend domain

mark j’ as non-
domain

Weighted interval scheduling

OPTC = max

(
OPTC(j � 1)

OPTC(c(j)) + p(aj , bj ,�)

√ √√ √
√ √ √

√

24



Distribution of mean interaction frequency

Multiscale domains capture high 
frequency edges consistently
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Enrichment for structure-related genomic 
signals in the boundaries

share this feature of classical insulators. A classical boundary element
is also known to stop the spread of heterochromatin. Therefore, we
examined the distribution of the heterochromatin mark H3K9me3 in
humans and mice in relation to the topological domains12,13. Indeed,
we observe a clear segregation of H3K9me3 at the boundary regions
that occurs predominately in differentiated cells (Fig. 2d, e and
Supplementary Fig. 11). As the boundaries that we analysed in

Fig. 2d are present in both pluripotent cells and their differentiated
progeny, the topological domains and boundaries appear to pre-mark
the end points of heterochromatic spreading. Therefore, the domains
do not seem to be a consequence of the formation of heterochromatin.
Taken together, the above observations strongly suggest that the topo-
logical domain boundaries correlate with regions of the genome dis-
playing classical insulator and barrier element activity, thus revealing a
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Figure 1 | Topological domains in the mouse ES cell genome. a, Normalized
Hi-C interaction frequencies displayed as a two-dimensional heat map
overlayed on ChIP-seq data (from Y. Shen et al., manuscript in preparation),
directionality index (DI), HMM bias state calls, and domains. For both
directionality index and HMM state calls, downstream bias (red) and upstream
bias (green) are indicated. b, Schematic illustrating topological domains and
resulting directional bias. c, Distribution of the directionality index (absolute
value, in blue) compared to random (red). d, Mean interaction frequencies at all
genomic distances between 40 kb to 2 Mb. Above 40 kb, the intra- versus inter-
domain interaction frequencies are significantly different (P , 0.005, Wilcoxon
test). e, Box plot of all interaction frequencies at 80-kb distance. Intra-domain
interactions are enriched for high-frequency interactions. f–i, Diagram of intra-
domain (f) and inter-domain FISH probes (g) and the genomic distance
between pairs (h). i, Bar chart of the squared inter-probe distance (from ref. 6)
FISH probe pairs. mESC, mouse ES cell. Error bars indicate standard error
(n 5 100 for each probe pair).
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Figure 2 | Topological boundaries demonstrate classical insulator or
barrier element features. a, Two-dimensional heat map surrounding the Hoxa
locus and CS5 insulator in IMR90 cells. b, Enrichment of CTCF at boundary
regions. c, The portion of CTCF binding sites that are considered ‘associated’
with a boundary (within 620-kb window is used as the expected uncertainty
due to 40-kb binning). d, Heat maps of H3K9me3 at boundary sites in human
and mouse. e, UCSC Genome Browser shot showing heterochromatin
spreading in the human ES cells (hESC) and IMR90 cells. The two-dimensional
heat map shows the interaction frequency in human ES cells. f, Heat map of
LADs (from ref. 14) surrounding the boundary regions. Scale is the log2 ratio of
DNA adenosine methylation (Dam)–lamin B1 fusion over Dam alone (Dam–
laminB1/Dam).

LETTER RESEARCH

1 7 M A Y 2 0 1 2 | V O L 4 8 5 | N A T U R E | 3 7 7

Macmillan Publishers Limited. All rights reserved©2012

[Dixon 2012]

boundary - a stretch of DNA 
between domains, 40-400Kbp

CTCF
• transcriptional regulation 
• insulator activity 
• regulation of chromatin 

architecture [PDB]

H3K27ac

H3K4me3

• chromatin structure in eukaryotes 
• form nucleosomes 
• H3 most extensively modified

transcription 
activation/repression

[Wheeler@Wikipedia]26



Enrichment for chromatin marks
CTCF in IMR90 CTCF in mESC

H3K27AC in mESC H3K4me3 in mESC
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More functional peaks in multiscale 
boundaries

Signal Boundaries (Dixon) Boundaries 
(Armatus)

СTCF (IMR90) 20% 44%

CTCF (mESC) 33% 72%

H3K4me3 (mESC) 30% 60%

H3K27ac (mESC) 23% 43%

Also: see peaks less often within multiscale domains
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Analyses Enabled by 
High-quality Domains

29



Multiscale Domains are Hierarchically Organized

Collect all optimal and near optimal-domains 
across scales into one set

Determine the percentage of all sufficiently 
different domain pairs di, dj where di is 
completely contained within dj or vice-versa.

95% of all sufficiently different domain 
pairs are hierarchically organized.

70% of re-shuffled domains are hierarchically 
organized.

30



Hierarchy Holds in Single-Cell Data Too

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

Cell 6

Cell 7

Cell 8

Cell 9

Cell 10

(data from Nagano et al., 2013)
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Mutation-gene pair

First Genome Wide Analysis Relating eQTLs to 
Chromatin Structure

Mutation/eQTL 

Gene

Hundreds of Thousands 
of Bases Alters

A T G C A T T T G G G G C C C 
Genome

Mutations tend to be 
spatially close to their 
target genes.

32
(Duggal, Wang, Kingsford, NAR, 2014)

Occur at the boundaries 
of domains



eQTLs Overlapping Regulatory Elements are Surprisingly 
Spatially Close to their Target Genes

Within-domain eQTLs

Pr
ob

ab
ili

ty
 d

en
si

ty

Measure of Spatial Proximity
33

(Duggal, Wang, 
Kingsford, NAR, 

2014)



Generative Model for Domain Formation 
From Histone Marks

• GM log likelihood function 

• x and y are indicator functions for when 
solution contains [s,e] and v not assigned to 
domain, respectively

€ 

argmax
D

 log( P(D | W,H)) =  rse xse
d =[s,e ]∈D 
∑ + Ev

e yv
v∈V
∑

€ 

rse = Es
b + Ee

b + Ev
i

v=s+1

e−1

∑
€ 

D = {[s,e] | s,e∈V ,e − s ≥1}



Generative Model of Domain Boundaries From 
Genomic Markers

(Sefer, Duggal, Kingsford, WABI 2015) 35



Deconvolution: Estimating Structural Classes 
From Population Hi-C

+ λ2 + λ3 + λ3λ1 =

structural 
class

class 
frequency

? ???

• Assume each class composed of imperfect domains (bandwidth quasi-cliques)

• Two stage iterative algorithm: 
1. estimate class matrices, fixing λi
2. estimate λi, fixing class matrices

• E. Sefer, G. Duggal, and C. Kingsford. Deconvolution Of Ensemble Chromatin 
Interaction Data Reveals The Latent Mixing Structures In Cell Subpopulations, 
RECOMB 2015.

36



Sketch of how deconvolution works

37

Bandwidth quasi-cliques:

Iterative 2-step method for optimizing weights (X) & domains (Y):



Deconvolution → Seemly better boundaries

38



• Identifies domains at multiple scales 

• Diverse in size and location, better enrichment 

• Requires a single parameter. 

• no assumptions about domain or boundary size, directionality, distribution of frequency values 

• Fast:  

• IMR90 all chromosomes, all scales + consensus -- < 40 min on an 2.3Ghz Intel Core i5, 8Gb RAM 
(Java) 

• Easily adapt block quality function

Armatus:

O(n2)

q(k, l, �)

Now:  Working  on methods to compare domains 
between cell types & species

39



Possible Renewal Contributions

• Relate spatial localization of transcription to (a) regulatory 
control, (b) phenotypes, (c) function more broadly 
[TR&D3]

• May have some “structure-based” connection to 
[TR&D1]

• Tools for incorporating gene expression measurements 
into (a) pathway inference, (b) pathway evolution 
[TR&D2] (Sailfish/Salmon/SBT)

• Tools for comparing pathways and using pathway 
evolution to refine inferred pathways [TR&D2] (GHOST, 
PARANA1, PARANA2, NetArch, …) 

40
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