Dynamic Modulation of Binding Affinity as a Mechanism to Regulate Interferon Signaling

Hongchun Li, Nanaocha Sharma, Ignacio General, Gideon Schreiber and Ivet Bahar

Department of Computational and Systems Biology
School of Medicine, University of Pittsburgh, Pittsburgh

&

Department of Biomolecular Sciences
Weizmann Institute of Science, Rehovot, Israel
Type I interferons (IFNs) and receptors (IFNAR1 and IFNAR2) and their signaling network

IFNs are members of the cytokine family mediating diverse biological responses: resistance to viral infections, modulation of cell survival, promotion of antitumor activities, regulation of immune response.

Weak, transient binding to a few receptors is sufficient to induce robust activities (such as antiviral).

Tight and prolonged binding to a large number of IFN receptors is required to induce the tunable activities (e.g., antiproliferative).

The tyrosine kinase 2 (Tyk2) and Janus family kinases (Jak1) associated with IFNAR1 and IFNAR2, respectively, transphosphorylate each other, and phosphorylate-specific tyrosine residues of IFNAR1 and IFNAR2 (red dots).

Upon phosphorylation, STAT1 and STAT2 form homo- and heterodimers, which translocate into the nucleus to activate transcription.
Ligand-binding induces conformational change in IFNAR1, which propagate to its membrane-proximal domain

Conformational change in IFNAR1 was observed by FRET, which showed an increase of ~12 Å in the distance between the C and N-terminal domains upon ligand binding.
Intrinsic ability of bound form IFNAR1 on membranes to adapt its conformation to functional interactions (observed in experiments)

Coupled movements of the ternary complex and membrane

The SD3 and SD4 domains moved close to each other. The distance between residues N23 (red sphere) and T407 (magenta sphere) decreased by ~10 Å. IFNAR1, IFNa2 and IFNAR2 in the ternary complex are colored cyan, light blue and pink, respectively.
IFNAR1 – Extreme Flexibility/Adaptability due to modularity

Crystal structures

Mouse IFNAR1

Human IFNAR1

RMSD: 10.2 Å

SD1

SD2

SD3

SD4

Human (bound)

Mouse IFNAR1

ANM mode 3

RMSD: 6.5 Å

SD1

SD2

SD3

SD4

Mouse IFNAR1

ANM mode 3

Human IFNAR1

ANM mode 1

Along ANM modes

Human IFNAR1, ANM mode 1

Bound crystal structure / Unbound crystal structure / ANM-prediction, starting from unbound

Mouse (bound)

Human (bound)

MD simulations

Human (bound) MD snapshot

107.4 Å

86.6 Å

Human (unbound)

RMSD: 4.1 -> 2.3 Å

ANM mode 4

109.5 Å

109.5 Å

100.4 Å

97.2 Å

Blue circles highlight sequentially distant inter-subdomain interactions. They are subject to large ANM distance fluctuations that permit them to come into close proximity to form disulfide bridges even if in the equilibrium state they are not so close to each other, and they are located on opposite sides of a GNM hinge.

GNM-based identification of IFNAR1 hinge sites

Dr. Ignacio General
Universidad Nacional de San Martin
Buenos Aires, Argentina

[GNM: http://gnm.csb.pitt.edu]
[ANM: http://anm.csb.pitt.edu]
The structural mobility of IFNAR1 allows selected residues pairs to come into proximity and form disulfide bridges.

Mode 1 I162E293 (green) and K164N207 (blue)

Mode 2 K220L306 (blue)

Mode 4 G133F238 (purple), L134R241 (green) and I19V187 (blue)

Crystal structures
Along ANM modes
Mode 4 G133-F238
Mode 4 L134-R241
Mode 1 I162-E293
Residue pairs located on opposite sides of GNM hinges selected for cross-linking experiments and functional assays

<table>
<thead>
<tr>
<th>Subdomains</th>
<th>Res 1</th>
<th>Res 2</th>
<th>Dista (Å)</th>
<th>ANM results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mode</td>
<td>MaxVar (Å)b</td>
</tr>
<tr>
<td>SD2-SD3</td>
<td>G133</td>
<td>F238</td>
<td>14.1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>L134</td>
<td>R241</td>
<td>8.2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>I162</td>
<td>E293</td>
<td>9.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>K164</td>
<td>N207</td>
<td>13.7</td>
<td>1</td>
</tr>
<tr>
<td>SD3-SD4</td>
<td>K220</td>
<td>L306</td>
<td>14.9</td>
<td>2</td>
</tr>
<tr>
<td>SD1-SD2</td>
<td>I19</td>
<td>V187</td>
<td>14.2</td>
<td>4</td>
</tr>
<tr>
<td>Set II – pairs located in the vicinity of hinge centers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD2-SD3</td>
<td>Y163</td>
<td>E293</td>
<td>7.6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E111</td>
<td>F290</td>
<td>7.5</td>
<td>1</td>
</tr>
<tr>
<td>SD1-SD2</td>
<td>D15</td>
<td>T123</td>
<td>6.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>D16</td>
<td>V127</td>
<td>6.4</td>
<td>4</td>
</tr>
<tr>
<td>SD3-SD4</td>
<td>C268</td>
<td>C328</td>
<td>6.8</td>
<td>4</td>
</tr>
</tbody>
</table>

a Distances between the two residues (based on Cα atoms) in the human IFNAR1 crystal structure, unbound form (PDB id: 3s98) with modeled SD4

b MaxVar is the difference between the maximal and minimal distances (Max d and Min d) between the two residues in the examined mode (based on Cα atoms) using the scaling parameter a = 27;

c E-Min d is the value for Min d after energy minimization;

d E2-Min d is the closest separation attained after a 2nd round of displacement along the same modes and energy minimization.
Disulfide bridge formation between 268-328 (SD34) and its restrictive effect on the dynamics of IFNAR1 SD4.

SD4 movement is severely restricted in the double mutant SD34 (B), compared to the WT (A).

White: initial IFNAR1 conformation
Cyan: MD sampled IFNAR1 conformation

The distances (W347-N349) in SD34 (gray) are in low level (strong quenching effects), compared to the WT (black).

The 268-328 disulfide bond hinders de-quenching of the fluorescence of Trp 347 upon IFN binding, suggesting inhibition of SD4 movement upon IFN binding.

Dr. Gideon Schreiber
Dept. Biomolecular Sciences
Weizmann Institute of Science
The cross-links (G133-F238 and L134-R241) with increasing distance from the global hinge center have stronger effects to the binding, due to increased moment arm.

Conclusion:
Dynamics modulates binding affinity, which in turn, modulates biological activity.
Acknowledgments

Funding
NIH grant P41 GM103712.

NIH National Institutes of Health

Dr. Gideon Schreiber
Dept. Biomolecular Sciences
Weizmann Institute of Science

Dr. Ignacio General
Universidad Nacional de San Martin
Buenos Aires, Argentina

Dr. Hongchun Li
Computational & Systems Biology Dept.
School of Medicine
University of Pittsburgh

Thanks

Dr. Nanaocha Sharma
Dept. Biomolecular Sciences
Weizmann Institute of Science

Dr. Ignacio General
Universidad Nacional de San Martin
Buenos Aires, Argentina
Intrinsic ability of IFNAR1 to adapt its conformation to functional interactions (observed in experiments) upon movements along its structure-encoded global modes.

The change observed experimentally between the unbound (green) and bound (cyan) structures of IFNAR1 agrees with the changes intrinsically favored by ANM.

The diagram colored orange is obtained by starting from the unbound form (green) and deforming it along its intrinsically accessible ANM mode 4.
Enhanced Movements along the global ANM modes of IFNAR1 structures from human.

2nd generation ANM:
- green: crystal structure of human IFNAR1
- yellow: 1st generation
- gray: 2nd generation ANM