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Introduction

* Neurotransmitter:sodium symporters (NSSs) are involved in many neurological
disorders including epilepsy, depression , anxiety and Parkinson disease, and
are targets of both clinical and illicit drugs, including stimulants such as cocaine
and amphetamine and antidepressants such as fluoxetine.

* NSSs carry out their role by coupling the energetically unfavorable translocation
of their substrate across the cell membrane to that of other ions, namely
sodium.

 The sodium:leucine transporter from Aquifex aeolicus (LeuT), a bacterial NSS,
has served as a model for NSSs due to its high-resolution crystal structures
resolved in various functional states; It is widely used to predict/investigate the
functional dynamics of the dopamine transporter
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Identification of States

Sampled States and subStates in the Molecular
Dynamics Simulations can be identified

Based on the o
conformations (via PCA) Based on Binding States

\ ¢

Free Energy Surface
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Part 1: Identification of States based on Conformations
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MD simulations of the LeuT

We have performed 20us of conventional Molecular Dynamics simulations of the LeuT as a dimerand 1 ps as a
monometr.

bound
LeuT duration (us)
substrate/ions

2 Na* 1.075
OF open Ala, 2 Na 0.55
Leu, 2 Na* (a) 1.94, (b) 1.51, (c)1.075
dimer none 1.05
OF occluded Ala, 2 Na* 2.63
(a) 3.365, (b) 3.03,
Leu, 2 Na*
(c)1.585
7a-b IF open none (a) 1.07, (b) 1.065

Anton simulations
Zomot, E., M. Gur, and |. Bahar. 2014. Microseconds simulations reveal a new sodium-binding site and the mechanism of sodium-coupled substrate
uptake by LeuT. Journal of Biological Chemistry (Under revision).



Identifying Principal Motions in the MD trajectories

A covariance matrix C was constructed for the LeuT protomer using all conformers from MD

simulations of the LeuT dimer and monomer as follows

c=((R=(R))(R=(R))")

Here R is the 3N-dimensional configuration vector composed of the instantaneous C*-atom
coordinates of the N residues of the protein.

Principal Components (PCs) are obtained by eigenvalue decomposition

3N
C= ZgipipiT
i1

Here p;is the it" PC (ith eigenvector) and s;is the corresponding variance (eigenvalue), ordered in

descending order with respect to s..
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Free energy

The conformational space sampled by MD is divided into grids, which are suitably grouped into

subspaces. N(®,) designates the number of conformers in each of these subspaces The probability
distribution function becomes;

f(R)=N(®,)/ Y N(®,)
S
The free energy surface is evaluated using this probability distribution function as

A(R) =—KT In{ f (R)}+ct
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Free energy surface along PCs
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M. Gur, J. Madura and I. Bahar. 2013. Global
Transitions of Proteins Explored by a Multiscale Hybrid
Methodology: Application to Adenylate Kinase .

Bophysical Journal, 105: 1643-1652.
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Incorporating coMD into Prody
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Transition mechanism of the LeuT from coMD
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Free energy surface along PCs
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Part 2: Identification of States based on Binding States
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Zomot, E., M. Gur, and |. Bahar. 2014.
Microseconds simulations reveal a new
sodium-binding site and the mechanism of
sodium-coupled substrate uptake by LeuT.
Journal of Biological Chemistry (Under
revision).
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Binding Sites
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Summary of all Transitions

~ &Y Occluded .
5[0,0,0,0,0] gpen Detailed Balance
0.047
k=1.91I k=47.96 kep(A)=k, p(B)
’ M k=7.42 Open k=5.70 Open
S[Nal ,0,0,0,0] Occluded/open  m———— S[O,Nal,0,0,0] € 2 S[OIOINal’IOIO]
= A
0.153 1 o0.1ss k=12.11 0.070
k=19.14
k=13.00 k=8.87
v o k=6.71 o
S[Na1”,Na1,0,0,0] "¢ > S[Na1”,0,Na1,0,0] "
A =
0.365 \ e 0.054
k=1.94 S[0, Na1,0,Na2,0] oe"
k=4.92 8.27
k=2.28
k=4.60 k=38.28
S[Na1”,Na1,0,0,Leu]””*" < S[0, Na1,0,Na2,leu] ¢ ———>5[0,0,Nal’,Na2,Leu] o7
k=9.5

0.0068 0.5238 0.0525



TZ5

=z

Summary of all Transitions
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Longer simulations are needed for such a detailed mapping but only a few binding-states of Na+ may be
statistically/reliably quantified.
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Zomot, E., M. Gur, and |. Bahar. 2014. Microseconds simulations reveal a new sodium-binding site and the mechanism of sodium-coupled substrate uptake
by LeuT. Journal of Biological Chemistry (Under revision).
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Smaller Protein: BPTI
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Comparison with a simple physics based model
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Anisotropic Network Model (ANM) is a simple physics-
based model of beads and springs, which exclusively
depends on inter-residue contact topology;

http://mmb.pcb.ub.es/FlexServ/help/NMA.php

Global Motions from MD and ANM are similar
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Atilgan, A. R,, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. 2001. Anisotropy of
fluctuation dynamics of proteins with an elastic network model. Biophys. J 80: 505-515.

M. Gur, E. Zomot and I. Bahar. 2013. Global Motions Exhibited by Proteins in Micro- to
Milliseconds Simulations Concur with Anisotropic Network Model Predictions . J.
Chem.Phys. 139:121912
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Conclusion

Molecular Dynamic simulations cannot provide unambiguous information on the complete
conformational space and its energetics unless the simulations are performed for long time scales
(e.g. milliseconds or longer), and even then, we obtain information on relatively localized events,
not cooperative ones that involve entire multimeric structures.

Results from simulations provide 'estimates' on accessible states and relative rates, along with
insights into mechanisms, e.g. order of binding and unbinding events, relative rates of some of the
steps along the transport cycle. Those binding or transport characteristics can be encoded into
higher level simulations.

There is a need to use hybrid methods (e.g. coMD that combine MD and ENM, WE, accelerated MD,
ENMs) for accurate sampling of conformational space. The major challenge is then to recalibrate
the results to extract quantitative information on transition rates and populations of substates
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