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Complex Systems 
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Model Checking 
 Detect bugs in a variety of hardware and software applications 

 E.g. microprocessor, railway system, satellite-control software 

 Many industrial successes  
 Intel, IBM, Apple, Microsoft, Motorola, Airbus, etc.  

2/10/2017 
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Model Checking 
 An automated method to formally verify a system's behavior 

with respect to a set of properties 

Edmund M. Clarke 

2/10/2017 
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Biological Machines 
 

  

Cell cycle 

Microtubule assembly, vesicle transport driven 
by motor proteins, protein synthesis by 
ribosome, power station mitochondria  ATP synthase 

Harvard, 2006 



Systems Biology Modeling 
 Mathematical formalisms 

 Ordinary Differential Equations 

 Petri Nets 

 Hybrid Automata 

 Markov chains (e.g. CTMC) 

 BioNetGen language 

 … 

 

 ODE Example (protein association):  

  + 

B A 
C 

v1 

v2 

                         v1=k1[A][B] 

                         v2=k2[C] 

d[B]/dt = - v1 + v2 = k1[A][B] – k2[C] 

Mass action law 
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Problems Faced 
 Which hypothesis is more plausible? 

 How to estimate unknown model parameters? 

 Which component is critical to the dynamics? 

 How to control to system to get a desired behavior? 

begin molecule type 

L() R() 

end molecule type 

begin reaction rules  

L(r) + R(l) <-> L(r!1).R(l!1) kp1, km1  

end reaction rules 

generate_network() 

simulate({method=>"ode",t_end=>500,n_s

teps=>500}) 

Model checking can help! 



Parameter Estimation 
 Goal: 

 Find values of parameter so that model predictions can 
match experimental data (e.g. time serials, steady state) 

Time

krbNGF = 0.33, KmAkt = 0.16, kpRaf1 = 0.42 … … 

krbNGF = 0.49, KmAkt = 0.08, kpRaf1 = 0.97 … … 

krbNGF = 0.88, KmAkt = 0.21, kpRaf1 = 0.05 … … 

target 
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Optimization Approach 
 Minimize the difference between model prediction 

and experimental data 
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J: objective function 



k2 

k1 

Example: Steepest Decent 
 Update following the direction of steepest descent on the 

hyper-surface of the objective function 

J(k1,k2) 
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Many Challenges 
 The curse of dimensionality 

 Over-fitting 

 Non-identifiable models 

 Inherent uncertainty of data 
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Our Solution 
 A statistical model 

checking (SMC) based 
approach 
 Encode training data as a 

bounded linear temporal 
logic (BLTL) formula 

 Evaluate candidate 
parameters using SMC 

 Perform global optimization 
(e.g. stochastic ranking 
evolutional strategy, SRES)  
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Model

TRUE or FALSE

Qualitative property:
Ψ: DNA damage 

induces p53 pulses
Qualitative data:

Temporal Logic Formulae

T he BT LT expressions of dynamical proper t ies

Pr oper t y 1 Mdm2 reaches its peak after p53.

Pr ≥ 0.95(p53(N ) 0.01nM ^ M dm2(N ) 0.01nM

F 300h (p53(N ) ≥ 1nM ^ M dm2(N ) 0.01nM ^

F 300h (p53(N ) ≥ 3nM ^ M dm2(N ) 0.4nM ^

F 300h (p53(N ) 4nM ^ M dm2(N ) 0.4nM ))))

T he above property specifies that the level of nuclear p53 reaches a peak value between 3 and 4 nM before

the level of nuclear Mdm2 reaching a peak value around 0.4 nM. This propert ies was verified to be true.

P r oper t y 2 Increased DNA damage induces more p53 pulses.

Pr ≥ 0.95(p53(N ) 5nM U 300h

(F 12h (p53(N ) ≥ 6nM ^ (F 12h (p53(N ) 5nM ^

(F 12h (p53(N ) ≥ 6nM ^ (F 12h (p53(N ) 5nM ^

(F 88h (G 88h (p53(N ) 5nM )))))))

T he above property specifies that upon 12 h IR exposure there are at least two p53 pluses induced. For

insufficient amount of DNA damage, this property was verified to be false, while it was verified to be true

for sufficient amount of DNA damage. This suggests that increased DNA damage induces more p53 pulses.

P r oper t y 3 Sustained caspase-3 once it s level reaches certain threshold.

Pr ≥ 0.95(C3 0.01nM U 300h (F 56h (C3 ≥ 0.3nM ^ G 44h (C3 0.3nM ))))

T he above property specifies that after caspase-3 concent rat ion reaches 0.3nM, it will sustain for at least 44

h and t riggers downst ream apoptot ic cascade. This property was verified to be true.

P r oper t y 4 Mutated Bax prevents the p53-mediated apoptosis.

Pr ≥ 0.95(C3 0.01nM U 300h (F 56h (G 100h (C3 0.3nM ))))

T he above property specifies the case that p53-mediated apoptosis is t riggered after IR. I t was verified to

be true when k11 = 2 ⇥ 10− 5s− 1. However, if we mutate Bax by reducing the act ivat ion rates of Bax, the

property was verified to be false, suggest ing that mutant Bax prevents the p53-mediated apoptosis.

P r oper t y 5 Inhibit ion of XIAP enhances p53-mediated apoptosis.

Pr ≥ 0.95(C3 0.01nM U 300h (F 56h (G 100h (C3 1nM ))))

T he above property specifies a high steady state of caspase-3 after IR. It was verified to be false when the

degradat ion rate of XIAP equals to 10− 4 s− 1. However, it was verified to be true when the degradat ion rate

of XIAP equals to 10− 2 s− 1, showing that the inhibit ion of XIAP enhances p53-mediated apoptosis.

P r oper t y 6 p53 pulses induce di↵ erent ial expression of target genes.

Pr ≥ 0.95(B ax 0.001nM ^ PUM A 0.0011nM U 300h

(F 56h (B ax ≥ 0.06nM ^ PUM A ≥ 0.06nM ^

(F 56h (B ax 0.04nM ^ PUM A 0.04nM ^

(F 56h (B ax ≥ 0.06nM ^ PUM A ≥ 0.06nM ^

(F 56h (B ax 0.04nM ^ PUM A 0.04nM )))))
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Parameters Θ: k1, k2,…
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Our Solution 
 Advantages 

 Utilize both quantitative and qualitative knowledge  

 Deal with uncertainty of the biological system/data  

 Good scalability due to the power of statistical testing  
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How to encode knowledge?  
 E.g. 

 “ERKp level is between 10nM and 20nM”   

 “Caspase-3 level sustains once it reaches threshold 30nM” 

 Temporal logic 
 A bounded linear temporal logic for biological properties (CSMB’13)  
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BLTL 
 A finite set of time points: 

 A trajectory is represented by  
σ = (s0 , t0), (s1 , t1), . . . (sT , tT) … 
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BLTL 
 Atomic (elementary) proposition: 

  e.g. the current concentration level of x is higher than y nM 

 

 

 

 The formulas are built over operators  

 

 

 

………………. 
𝜎 

𝑆0 𝑆𝑇 𝑆1 𝑆2 

𝜑 

𝜑′ 

𝜑′′ 

𝜎 𝑜 ⊧ 𝜑φ′, 𝜎 𝑜 ⊧ 𝜑φ′, 𝜎 𝑜 ⊧ 𝜑, 𝜎 𝑜 ⊧ ~𝜑′′ 

𝜎 𝑜 ⊧ 𝜑Utφ′,  𝜑 will be true until φ′ is true  

𝜎 𝑜 ⊧ O 𝜑 , 𝜑 is true in the next state 

𝜎 𝑜 ⊧ Ft φ′ , φ′ will be true some time in the future 

𝜎 𝑜 ⊧ Gt φ , φ will be globally true in the future  

𝜎(o) ⊧ Ft φ , φ is true at time point t  

…… 

},,,,{#,# yx

tttttt
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Probabilistic BLTL 
 Example: 

 Caspase-3 level sustains once it reaches threshold 30nM 
with a probability at least 0.95 
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SMC of PBLTL formulas 
 Check                     using a sequential hypothesis test between 

 

 Generate a sequence of sample trajectories:  

 Verify each trajectory and determine whether accept H0 or 
H1 based on Type I/II error bounds (α, β):  

 

  

 

  rprp :H1 and :H0

18 

)(Pr| rM 

,..., 21 

On-the-fly  



Knowledge Encoding  
 Quantitative experimental data 

 

 

 Qualitative properties of the dynamics 
 E.g. transient/sustained activation, oscillatory behavior, bistable, … 

 ‘trend’ formulas:  

  

 PBLTL formula:  
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SMC based Parameter Estimation 
1. Guess θl 

2. Verify                    with the chosen 
strength 

3. Compute F(θl) 

4. Terminate or make a new guess 
(based on search strategy e.g.  
SRES) and repeat step 1  

  

 

 

 

qlty exp
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Model

TRUE or FALSE

Qualitative property:
Ψ: DNA damage 

induces p53 pulses
Qualitative data:

Temporal Logic Formulae

T he BT LT expressions of dynamical proper t ies

Pr oper t y 1 Mdm2 reaches its peak after p53.

Pr ≥ 0.95(p53(N ) 0.01nM ^ M dm2(N ) 0.01nM
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T he above property specifies that the level of nuclear p53 reaches a peak value between 3 and 4 nM before
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T he above property specifies that upon 12 h IR exposure there are at least two p53 pluses induced. For

insufficient amount of DNA damage, this property was verified to be false, while it was verified to be true

for sufficient amount of DNA damage. This suggests that increased DNA damage induces more p53 pulses.
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T he above property specifies that after caspase-3 concent rat ion reaches 0.3nM, it will sustain for at least 44

h and t riggers downst ream apoptot ic cascade. This property was verified to be true.

P r oper t y 4 Mutated Bax prevents the p53-mediated apoptosis.

Pr ≥ 0.95(C3 0.01nM U 300h (F 56h (G 100h (C3 0.3nM ))))

T he above property specifies the case that p53-mediated apoptosis is t riggered after IR. I t was verified to

be true when k11 = 2 ⇥ 10− 5s− 1. However, if we mutate Bax by reducing the act ivat ion rates of Bax, the

property was verified to be false, suggest ing that mutant Bax prevents the p53-mediated apoptosis.

P r oper t y 5 Inhibit ion of XIAP enhances p53-mediated apoptosis.

Pr ≥ 0.95(C3 0.01nM U 300h (F 56h (G 100h (C3 1nM ))))

T he above property specifies a high steady state of caspase-3 after IR. It was verified to be false when the

degradat ion rate of XIAP equals to 10− 4 s− 1. However, it was verified to be true when the degradat ion rate

of XIAP equals to 10− 2 s− 1, showing that the inhibit ion of XIAP enhances p53-mediated apoptosis.

P r oper t y 6 p53 pulses induce di↵ erent ial expression of target genes.
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Stochastic Ranking Evolutionary Strategy 
 A variation of evolutionary strategy 

 Select best λ solutions according to a probabilistic 
formula 

 One of the best performing global method in parameter 
estimation (Moles et al, Genome Res 2003) 

 

Initializing a 
population 

Recombination 

Mutation 

Selection 

Terminate? 

21 



Benchmarking 
 p53-induced apoptosis 

 86 rules 

 160 parameters (10 unknown) 

 Synthetic training data 
 4 species at 5 time points  

 3 qualitative properties: 

 Mmd2 reaches its peak before p53 

 Sustained caspase-3 once its 
level reaches certain threshold  

 p53 pulses induce oscillatory 
behaviors of target genes  
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Liu et al, Sci Rep, 2014 



Benchmarking 
 Running time: 4.2 hours 

 Reproduce quantitative data  
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Benchmarking 
 Reproduce qualitative behaviors 

 Mmd2 reaches its peak after p53 

 Sustained caspase-3 once its level reaches certain threshold  

 p53 pulses induce oscillatory behaviors of target genes   
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Amphetamine (AMPH) 
 Induce euphoria and 

hyperactivity by increasing 
extracellular dopamine 

 AMPH enters DA neurons via 
DAT 

 ‘Block’ VMAT2  

 Enhance DA efflux  

 via PKC, CaMKII, G-protein 
pathways 

 Stimulate DAT internalization 

 via Rho pathway  
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Presynaptic Neuron  

Postsynaptic Neuron  
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Amphetamine (AMPH) 
 Induce euphoria and 

hyperactivity by increasing 
extracellular dopamine 

 AMPH enters DA neurons via 
DAT 

 ‘Block’ VMAT2  

 Enhance DA efflux  

 via PKC, CaMKII, G-protein 
pathways 

 Stimulate DAT internalization 

 via Rho pathway  
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Presynaptic Neuron  

Postsynaptic Neuron  

DA

DR1/5	

Signal	
Transduction

DAT

DR2/3/4	

DAT

DAT	Internalization

VMAT

DA	Release

DA	Reuptake

AMPH

DA	EffluxSignaling	
Network
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A Kinetic Model 
AMPH(EC) 

cAMP 

Internalization 

PKA 

DA(EC) 

DA(IC) 

PKA* 

Rho-GDP Rho-GTP 

pRho 

DAT 

DAT 

DAT:DA DAT:AMPH 
D1/5 

DA(EC) 
D1/5* 

AC 

Gs 
AC:Gs 

Gs,β,γ 
Gβ,γ 
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P 

P 

DAT 

DAT 

CaMKII 

Ca2+(EC) 

CaMKII* 

DAT 

Efflux 

CaV 

DAG 
PIP2 

IP3 
PLC* PLC 

Gq,β,γ 
Gqs 

Ca2+(ER) 

Ca2+(IC) 

IP3R* 
IP3R 

NET 

CaM 

CaM* 

Gβ,γ 

Gβ,γ:DAT 

DAT:AMPH 

TAAR1 

TAAR1* 
D2 

DA(EC) 
D2* 

Gi,β,γ 
Gqi 

VMAT 

AMPH(IC) 

AMPH(IC) 

DA(IC) 



Training data 
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Wheeler et al, PNAS 2015 
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Training Data 

 Effect of N-terminal Serines Phosphorylation on DA efflux  
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2.  Effect of N-terminal Serines Phosphorilation on DA efflux

Serines 2,3,7,12 and 13 in hDAT were substituted for  

Ala (S/A) to eliminate Ser/Threo phosphorylation site 

or  Asp (S/D) to mimic the negative charge that 

phosphates groups add to the N-terminal Serines

after phosphorylation.

This mutant exhibit an anomaly DA efflux (ADE), a 

basal efflux.

Important Bibliography

-Koshbouei, 2004 (PlosBiology)

-Fog Neuron 2006
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Training Data 
 Amperometric recordings for DA efflux after Gβγ stimulation 

in CHO cells expressing DAT  
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Data for Bing (08.18.16)

1. Amperometric recordings for DA efflux after Gβγ stimulation in CHO cells expressing DAT
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Model reproduces test data 
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Experimental data 
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Model Predictions 
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DA(EC) release from presynaptic cell  
DA(EC) diffuse away 

DA(EC) DATo binding 
DA(IC) DATp binding 
DA(IC) degradation 

DAT dephosphorylation 
DAT phosphorylation (by CaMKII*) 

DAT phosphorylation (by PKC*) 
Rho deactivation  

PKC activation 
PKC deactivation 

DAT internalization (by Rho*) 
IP3 production 
PLC activation 
Rho activation 

Sensitivities Selective Reactions 
0                       0.5                      1.0 

Efflux 

Internalization 

• Sensitivity analysis suggests that AMPH modulates DA(EC) level 
mainly through the DA efflux pathways, than DAT internalization  

• Simultaneously block DAT internalization and DA efflux pathways 
synergistically enhance DA reuptake 

 

0.0

0.5

1.0

 

 

A: DAT phosphorylation by CaMKKII* 
B: Rho activation 

+             -            +           -                     

+            +            -            - 

A 

B 

E
x
tr

a
c
e

llu
la

r 
D

A
 (

a
.u

.)
 



0 10 20 30
0

5

10

 

 

A
M

P
H

(I
C

) 
(

M
)

Time (min)

 k/down DAT internelization

 control

Model Predictions 

• How Rho mediated feedforward/back loops fine-tune AMPH 
induced DAT internalization 
– The role of the feedback loop is insignificant 

– The feedforward loop governs the time window of Rho activation 

AMPH 

DAT cAMP 
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Feedforward 
loop 

Feedback 
loop 
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Conclusion 
 A SMC based approach for the parameter estimation of rule-

based models 

 Utilize both quantitative and qualitative knowledge 

 Deal with uncertainty of biological systems/data 

 Good performance due to the power of statistical testing and 
online model checking 

34 



Our MC-based Techniques 

 System Representation 
- DBN (Bioinformatic, 2012) 
- ODEs (CMSB’13) 
- Stochastic models (Sci Rep, 2014) 
- Hybrid Automata (CMSB’14, HSCC’15, HSB’15) 
- Boolean Network (CMSB’16) 
- Rule-based models (BIBM’16) 

Temporal Property 
- Bounded Linear Temporal Logic 
- Quantitative property  
- Qualitative behaviors    

Model Checking 
- Statistical model checking 
- Probabilistic model checking 
- δ-decision model checking 
- Symbolic model checking   

SAT 

UNSAT 

Sensitivity analysis 

Parameter estimation 

Predict therapeutic strategies  
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Biological	System	&	Data

BioNetGen Modeling	&	Analysis

begin reaction rules 

L(r) + R(l) <-> 

L(r!1).R(l!1) kp1, km1 

end reaction rules

generate_network() 

simulate({method=>"ode",t_e

nd=>500,n_steps=>500})

Model	
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Parameter Estimation
&	Model Validation
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ODE Dynamics 
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Case Studies 
 Pathway models taken from BioModels database 

 Nominal parameters 

 Synthetic experimental data 

 Qualitative trend 
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 ODE model (Brown et al. 2004) 
 32 species 

 48 parameters (20 unknown) 
 

 Training data 
 7 species, 9 time points 

 Test data 
 2 species, 9 time points 

 

EGF-NGF Pathway 
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EGF-NGF Pathway 
 Running time: 2.23 hours 

  

 

 

Training data Test data 
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Segmentation Clock Network 
 ODE model (Goldbeter et al. 2008) 

 22 species, 75 parameters (40 unknown) 

 Training data 
 Time serials: Axin2 mRNA, 14 time points  

 Qualitative trend: 5 species, oscillatory behavior 
 E.g.  

 Test data: Dusp6 protein, qualitative trend 

]))))))4.0([]2.2([(]4.0([]2.2([(]4.0(([  LmRNALmRNALmRNALmRNALmRNA FFFF



Segmentation Clock Network 
 Running time: 2.2 hours 

  

 

 

Training data Test data 
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MLC Phosphorylation Pathway 
 Regulates the contraction of endothelia cells 

 ODE model (Maeda et al 2006) 
 105 species, 197 parameters (100 unknown parameters) 

 Training data 
 Time serials: 8 species, 12 time points 

 Qualitative trend: 2 species 

 Test data 
 2 species, 12 time points 

 



MLC Phosphorylation Pathway 
 Running time: 50.67 hours 

  

 

 

Training data Test data 
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Parameter Estimation for BioNetGen 
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Combinatorial complexity limits the 
standard network modeling approach. 
We can understand the limitations on the 

conventional ODE-based modeling 

approaches through the simple example 
shown in Fig. V.2. A small number of 

molecules interacting in the prescribed 

way can generate a huge number of 
possible species – over 1000 in this case 

– which would require an equal number 

of ODE’s to model. In practice, most 
modelers avoid this complexity by 

making additional assumptions to limit 

the number of possible combinations. 

For example, the complexity drops 
nearly two orders of magnitude here if 

one assumes that only one of the 

adaptors (orange) can bind to the 
receptor (blue) at a time. Although this is 

currently standard practice, there is no 
principled way to carry out this step; doing so requires assumptions that may introduce errors.16 Combinatorial 
complexity arises throughout biology even in apparently simple systems involving the interaction of only a few 
proteins17–19 and becomes a major limiting factor in the modeling of signaling systems as diverse as the 

epidermal growth factor receptor (EGFR),20–22 MAP kinase cascade,23,24 the T cell receptor,25–27 CaMKII,28,29 
and the postsynaptic density.30,31 Conventional network modeling approaches based on ODEs therefore face 
fundamental limits on scalability and accuracy.32 

Rule-based Modeling (RBM) is ODE’s and much more. In RBM molecular interactions, such as those 

shown in the contact map of Fig. V.2, are encoded as rules, which specify the properties that a particular set of 
reactants must possess and a function that determines their rate of interaction. The model that generated this 

contact map had 18 such reaction rules. BioNetGen33–35 can expand these rules to generate the full set of 

ODEs or simulate the model in other ways – using stochastic dynamics, PDEs, etc. (Fig. V.3) Besides 
compactness, another advantage of the rule-based approach is that the coarse-grained structural features of 
the molecules are explicitly represented, which facilitates understanding and enables mapping to finer 
structural scales.  

Network-free simulation 
provides scalable 

simulation of RBMs. RBM 

languages make it easy to 
encode models for which 

the full set of equations is 

too large to enumerate in 

advance.
36

 “Network-free” 
simulation methods37,38 

avoid explicit generation of 
species and reactions by 
using particle-based 
simulation driven by the 

rules. These simulation 
methods have a 

computational scaling that 
is nearly independent of 

network size.36–38 We have 
introduced a general-

purpose stochastic solver 

 
Figure V.2. Combinatorial complexity in a model of epidermal growth 
factor receptor (EGFR) signaling.

20
 A. Contact map showing interactions 

of receptor (R), its ligand (EGF), three intracellular proteins through specific 
components that represent sites of binding and posttranslational 
modification (represented by yellow circles). B. Combinatorial complexity in 
the number of EGFR-containing species. Each leaf in the tree represents a 
different possible state of a receptor component. There are 48 possible 
monomeric and 1176 possible dimeric species. 

 
Fig. V.3. Connectivity between BioNetGen and other selected tools for modeling and 
simulation. Green boxes indicate other MMBioS tools, orange boxes indicate tools 
developed by our C&SP collaborators. Current communications are file-based but would be 
more efficiently managed with the development of the libBNG API in Aim 3.1.  

JR Faeder, unpublished 

 Current solutions: ptempest, BioNetFit, SBML tools 



Our MC-based Techniques 

 System Representation 
- DBN (Bioinformatic, 2012) 
- ODEs (CMSB’13) 
- Stochastic models (Sci Rep, 2014) 
- Hybrid automata (CMSB’14, HSCC’15, HSB’15) 
- Boolean network (CMSB’16) 
- Rule-based models (BIBM’16) 

Temporal Property 
- Bounded Linear Temporal Logic 

Model Checking 
- Statistical model checking 
- Probabilistic model checking 
- δ-decision model checking 
- Symbolic model checking   

SAT 

UNSAT 

Sensitivity analysis 

Parameter estimation 

Predict therapeutic strategies  
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Signaling Pathways 
- Cell death 
- Cell differentiation  
- Cell proliferation 
- Cell migration 
- … … 

Metabolic Pathways 

Gene Regulatory Network 

Macrophage 
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Biological Networks 

Harvard, 2006 



Model Parameters 
 Two types of model parameters 

 Initial conditions 

 Rate constants 

 Experimental measurements 
 Expensive 

 Not possible to measure all parameters 

 In vitro measurements may not reflect the actual physiological 
conditions in the cell (Minton, J Biol Chem, 2001) 

 Cell population-based measurements are not very accurate (Kim 
& Price, Phys Rev Lett, 2010) 
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On-the-fly Model Checking 
 Model checking and generation of trace are coupled i.e. 

simulate as much as you need. 

 Algorithm 
 At each time point we maintain the minimum subset of formulas 

that need to be true at the state. 

 Based on the simulation, we check the validity of the elements in this 
set to verify the property 

 Simulation is stopped once the formula has been asserted true/false 
by the model checking algorithm.  

 We repeat the process of generating simulations and verification 
until we run enough simulations to satisfy the Wald's statistical test. 
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